31 research outputs found
Large Scale Structure and Supersymmetric Inflation without Fine Tuning
We explore constraints on the spectral index of density fluctuations and
the neutrino energy density fraction , employing data from a
variety of large scale observations. The best fits occur for and
, over a range of Hubble constants km
s Mpc. We present a new class of inflationary models based on
realistic supersymmetric grand unified theories which do not have the usual
`fine tuning' problems. The amplitude of primordial density fluctuations, in
particular, is found to be proportional to , where
denote the GUT (Planck) scale, which is reminiscent of cosmic strings! The
spectral index , in excellent agreement with the observations
provided the dark matter is a mixture of `cold' and `hot' components.Comment: LaTEX, 14 pp. + 1 postscript figure appende
On the spin distributions of CDM haloes
We used merger trees realizations, predicted by the extended Press-Schechter
theory, in order to study the growth of angular momentum of dark matter haloes.
Our results showed that: 1) The spin parameter resulting from the
above method, is an increasing function of the present day mass of the halo.
The mean value of varies from 0.0343 to 0.0484 for haloes with
present day masses in the range of to
. 2)The distribution of is close to
a log-normal, but, as it is already found in the results of N-body simulations,
the match is not satisfactory at the tails of the distribution. A new
analytical formula that approximates the results much more satisfactorily is
presented. 3) The distribution of the values of depends only weakly
on the redshift. 4) The spin parameter of an halo depends on the number of
recent major mergers. Specifically the spin parameter is an increasing function
of this number.Comment: 10 pages, 8 figure
Cold Plus Hot Dark Matter Cosmology in the Light of Solar and Atmospheric Neutrino Oscillations
We explore the implications of possible neutrino oscillations, as indicated
by the solar and atmospheric neutrino experiments, for the cold plus hot dark
matter scenario of large scale structure formation. We find that there are
essentially three distinct schemes that can accommodate the oscillation data
and which also allow for dark matter neutrinos. These include (i) three nearly
degenerate (in mass) neutrinos, (ii) non-degenerate masses with in
the eV range, and (iii) nearly degenerate pair (in the eV
range), with the additional possibility that the electron neutrino is
cosmologically significant. The last two schemes invoke a `sterile' neutrino
which is light (< or ~ eV). We discuss the implications of these schemes for
and oscillation, and find
that scheme (ii) in particular, predicts them to be in the observable range. As
far as structure formation is concerned, we compare the one neutrino flavor
case with a variety of other possibilities, including two and three degenerate
neutrino flavors. We show, both analytically and numerically, the effects of
these neutrino mass scenarios on the amplitude of cosmological density
fluctuations. With a Hubble constant of 50 km s Mpc, a spectral
index of unity, and , the two and three flavor
scenarios fit the observational data marginally better than the single flavor
scheme. However, taking account of the uncertainties in these parameters, we
show that it is premature to pick a clear winner.Comment: 1 LaTEX file plus 1 uuencoded Z-compressed tar file with 3 postscript
figure
Tides in colliding galaxies
Long tails and streams of stars are the most noticeable upshots of galaxy
collisions. Their origin as gravitational, tidal, disturbances has however been
recognized only less than fifty years ago and more than ten years after their
first observations. This Review describes how the idea of galactic tides
emerged, in particular thanks to the advances in numerical simulations, from
the first ones that included tens of particles to the most sophisticated ones
with tens of millions of them and state-of-the-art hydrodynamical
prescriptions. Theoretical aspects pertaining to the formation of tidal tails
are then presented. The third part of the review turns to observations and
underlines the need for collecting deep multi-wavelength data to tackle the
variety of physical processes exhibited by collisional debris. Tidal tails are
not just stellar structures, but turn out to contain all the components usually
found in galactic disks, in particular atomic / molecular gas and dust. They
host star-forming complexes and are able to form star-clusters or even
second-generation dwarf galaxies. The final part of the review discusses what
tidal tails can tell us (or not) about the structure and content of present-day
galaxies, including their dark components, and explains how tidal tails may be
used to probe the past evolution of galaxies and their mass assembly history.
On-going deep wide-field surveys disclose many new low-surface brightness
structures in the nearby Universe, offering great opportunities for attempting
galactic archeology with tidal tails.Comment: 46 pages, 13 figures, Review to be published in "Tidal effects in
Astronomy and Astrophysics", Lecture Notes in Physics. Comments are most
welcom
Clusters of galaxies: setting the stage
Clusters of galaxies are self-gravitating systems of mass ~10^14-10^15 Msun.
They consist of dark matter (~80 %), hot diffuse intracluster plasma (< 20 %)
and a small fraction of stars, dust, and cold gas, mostly locked in galaxies.
In most clusters, scaling relations between their properties testify that the
cluster components are in approximate dynamical equilibrium within the cluster
gravitational potential well. However, spatially inhomogeneous thermal and
non-thermal emission of the intracluster medium (ICM), observed in some
clusters in the X-ray and radio bands, and the kinematic and morphological
segregation of galaxies are a signature of non-gravitational processes, ongoing
cluster merging and interactions. In the current bottom-up scenario for the
formation of cosmic structure, clusters are the most massive nodes of the
filamentary large-scale structure of the cosmic web and form by anisotropic and
episodic accretion of mass. In this model of the universe dominated by cold
dark matter, at the present time most baryons are expected to be in a diffuse
component rather than in stars and galaxies; moreover, ~50 % of this diffuse
component has temperature ~0.01-1 keV and permeates the filamentary
distribution of the dark matter. The temperature of this Warm-Hot Intergalactic
Medium (WHIM) increases with the local density and its search in the outer
regions of clusters and lower density regions has been the quest of much recent
observational effort. Over the last thirty years, an impressive coherent
picture of the formation and evolution of cosmic structures has emerged from
the intense interplay between observations, theory and numerical experiments.
Future efforts will continue to test whether this picture keeps being valid,
needs corrections or suffers dramatic failures in its predictive power.Comment: 20 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 2; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Cosmology with clusters of galaxies
In this Chapter I review the role that galaxy clusters play as tools to
constrain cosmological parameters. I will concentrate mostly on the application
of the mass function of galaxy clusters, while other methods, such as that
based on the baryon fraction, are covered by other Chapters of the book. Since
most of the cosmological applications of galaxy clusters rely on precise
measurements of their masses, a substantial part of my Lectures concentrates on
the different methods that have been applied so far to weight galaxy clusters.
I provide in Section 2 a short introduction to the basics of cosmic structure
formation. In Section 3 I describe the Press--Schechter (PS) formalism to
derive the cosmological mass function, then discussing extensions of the PS
approach and the most recent calibrations from N--body simulations. In Section
4 I review the methods to build samples of galaxy clusters at different
wavelengths. Section 5 is devoted to the discussion of different methods to
derive cluster masses. In Section 6 I describe the cosmological constraints,
which have been obtained so far by tracing the cluster mass function with a
variety of methods. Finally, I describe in Section 7 the future perspectives
for cosmology with galaxy clusters and the challenges for clusters to keep
playing an important role in the era of precision cosmology.Comment: 49 pages, 19 figures, Lectures for 2005 Guillermo Haro Summer School
on Clusters, to appear in "Lecture notes in Physics" (Springer