9,831 research outputs found
Multiple-camera/motion stereoscopy for range estimation in helicopter flight
Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment
Gennaeocrinus variabilis, a New Species of Crinoid from the Middle Devonian Bell Shale of Michigan
173-194http://deepblue.lib.umich.edu/bitstream/2027.42/48355/2/ID198.pd
The Crinoid Synbathocrinus in the Middle Devonian Traverse Group of Michigan
185-196http://deepblue.lib.umich.edu/bitstream/2027.42/48374/2/ID218.pd
Symmetry operators for Dirac's equation on two-dimensional spin manifolds
It is shown that the second order symmetry operators for the Dirac equation
on a general two-dimensional spin manifold may be expressed in terms of Killing
vectors and valence two Killing tensors. The role of these operators in the
theory of separation of variables for the Dirac equation is studied.Comment: Typos correcte
Sweet Syndrome due to Myelodysplastic Syndrome: Possible Therapeutic Role of Intravenous Immunoglobulin in Addition to Standard Treatment
We report an 82-year-old lady who developed sudden onset nodular and erythematous lesions and neutrophilia following an episode of urinary tract infection. Skin biopsy confirmed the diagnosis of Sweet syndrome. Response to the use of prednisolone alone was not satisfactory. The skin lesions however showed a sustained response to the regular use of intravenous immunoglobulin (IVIG) and prednisolone was slowly weaned off. Our case highlights the possible therapeutic role of IVIG in managing this condition
Inflight Microbial Monitoring-An Alternative Method to Culture Based Detection Currently Used on International Space Station
Previous research has shown that microorganisms and potential human pathogens have been detected on the International Space Station (ISS). The potential to introduce new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Previous research has shown that microorganisms introduced to the ISS are readily transferred between crew and subsystems and back (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and a 48-hour incubation time. This increases the microbial load while detecting a limited number of microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification, To identify and enumerate ISS samples requires that samples to be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganism at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction
Inflight Microbial Monitoring- An Alternative Method to Culture Based Detection Currently Used on the International Space Station
Previous research has shown that potentially destructive microorganisms and human pathogens have been detected on the International Space Station (ISS). The likelihood of introducing new microorganisms occurs with every exchange of crew or addition of equipment or supplies. Microorganisms introduced to the ISS are readily transferred between crew and subsystems (i.e. ECLSS, environmental control and life support systems). Current microbial characterization methods require enrichment of microorganisms and at least a 48-hour incubation time. This increases the microbial load while detecting only a limited number of the total microorganisms. The culture based method detects approximately 1-10% of the total organisms present and provides no identification. To identify and enumerate ISS microbes requires that samples be returned to Earth for complete analysis. Therefore, a more expedient, low-cost, in-flight method of microbial detection, identification, and enumeration is warranted. The RAZOR EX, a ruggedized, commercial off the shelf, real-time PCR field instrument was tested for its ability to detect microorganisms at low concentrations within one hour. Escherichia coli, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa were detected at low levels using real-time DNA amplification. Total heterotrophic counts could also be detected using a 16S gene marker that can identify up to 98% of all bacteria. To reflect viable cells found in the samples, RNA was also detectable using a modified, single-step reverse transcription reaction
A Deep Chandra X-ray Spectrum of the Accreting Young Star TW Hydrae
We present X-ray spectral analysis of the accreting young star TW Hydrae from
a 489 ks observation using the Chandra High Energy Transmission Grating. The
spectrum provides a rich set of diagnostics for electron temperature T_e,
electron density N_e, hydrogen column density N_H, relative elemental
abundances and velocities and reveals its source in 3 distinct regions of the
stellar atmosphere: the stellar corona, the accretion shock, and a very large
extended volume of warm postshock plasma. The presence of Mg XII, Si XIII, and
Si XIV emission lines in the spectrum requires coronal structures at ~10 MK.
Lower temperature lines (e.g., from O VIII, Ne IX, and Mg XI) formed at 2.5 MK
appear more consistent with emission from an accretion shock. He-like Ne IX
line ratio diagnostics indicate that T_e = 2.50 +/- 0.25 MK and N_e = 3.0 +/-
0.2 x 10^(12) cm^(-3) in the shock. These values agree well with standard
magnetic accretion models. However, the Chandra observations significantly
diverge from current model predictions for the postshock plasma. This gas is
expected to cool radiatively, producing O VII as it flows into an increasingly
dense stellar atmosphere. Surprisingly, O VII indicates N_e = 5.7
^(+4.4}_(-1.2) x 10^(11) cm^(-3), five times lower than N_e in the accretion
shock itself, and ~7 times lower than the model prediction. We estimate that
the postshock region producing O VII has roughly 300 times larger volume, and
30 times more emitting mass than the shock itself. Apparently, the shocked
plasma heats the surrounding stellar atmosphere to soft X-ray emitting
temperatures and supplies this material to nearby large magnetic structures --
which may be closed magnetic loops or open magnetic field leading to mass
outflow. (Abridged)Comment: 13 pages (emulateapj style), 10 figures, ApJ, in pres
Four Reports of Ostracod Investigations Conducted Under National Science Foundation Project GB-26
1-79http://deepblue.lib.umich.edu/bitstream/2027.42/48586/2/ID447.pd
Development of Crop.LCA, an adaptable screening life cycle assessment tool for agricultural systems: a Canadian scenario assessment
There is an increasing demand for sustainable agricultural production as part of the transition towards a globally sustainable economy. To quantify impacts of agricultural systems on the environment, life cycle assessment (LCA) is ideal because of its holistic approach. Many tools have been developed to conduct LCAs in agriculture, but they are not publicly available, not open-source, and have a limited scope. Here, a new adaptable open-source tool (Crop.LCA) for carrying out LCA of cropping systems is presented and tested in an evaluation study with a scenario assessment of 4 cropping systems using an agroecosystem model (DNDC) to predict soil GHG emissions. The functional units used are hectares (ha) of land and gigajoules (GJ) of harvested energy output, and 4 impact categories were evaluated: cumulative energy demand (CED), 100-year global warming potential (GWP), eutrophication and acidification potential. DNDC was used to simulate 28 years of cropping system dynamics, and the results were used as input in Crop.LCA. Data were aggregated for each 4-year rotation and statistically analyzed. Introduction of legumes into the cropping system reduced CED by 6%, GWP by 23%, and acidification by 19% per ha. These results highlight the ability of Crop.LCA to capture cropping system characteristics in LCA, and the tool constitutes a step forward in increasing the accuracy of LCA of cropping systems as required for bio-economy system assessments. Furthermore, the tool is open-source, highly transparent and has the necessary flexibility to assess agricultural systems
- …