385 research outputs found
From Appraisal to Emotion: Differences among Unpleasant Feelings
Recent research has indicated strong relations between people\u27s appraisals of their circumstances and their emotional states. The present study examined these relations across a range of unpleasant situations in which subjects experienced complex emotional blends. Subjects recalled unpleasant experiences from their pasts that were associated with particular appraisals and described their appraisals and emotions during these experiences. Situations defined by particular appraisals along the human agency or situational control dimensions were reliably associated with different levels of anger, sadness, and guilt, as predicted. However, predicted differences in emotion were not observed for situations selected for appraisals along the certainty or attention dimensions. Most subjects reported experiencing blends of two or more emotions, and correlation/regression analyses indicated that even in the context of these blends, patterns of appraisal similar to those observed previously (Smith & Ellsworth, 1985, 1987) characterized the experience of the individual emotions. The regressions further indicated that appraisals along some dimensions were more important to the experience of particular emotions than were appraisals along other dimensions. These central appraisals are compared with the adaptive functions their associated emotions are believed to serve, and the implications of these findings are discussed
Changes in cardiac-driven perivascular fluid movement around the MCA in a pharmacological model of acute hypertension detected with non-invasive MRI
Perivascular spaces mediate a complex interaction between cerebrospinal fluid and brain tissue that may be an important pathway for solute waste clearance. Their structural or functional derangement may contribute to the development of age-related neurogenerative conditions. Here, we employed a non-invasive low b-value diffusion-weighted ECG-gated MRI method to capture perivascular fluid movement around the middle cerebral artery of the anaesthetised rat brain. Using this method, we show that such MRI estimates of perivascular fluid movement directionality are highly sensitive to the cardiac cycle. We then show that these measures of fluid movement directionality are decreased in the angiotensin-II pharmacological model of acute hypertension, with an associated dampening of vessel pulsatility. This translational MRI method may, therefore, be useful to monitor derangement of perivascular fluid movement associated with cardiovascular pathologies, such as hypertension, in order to further our understanding of perivascular function in neurology
Single-cell RNA sequencing redefines the mesenchymal cell landscape of mouse endometrium
The endometrium is a dynamic tissue that exhibits remarkable resilience to repeated episodes of differentiation, breakdown, regeneration, and remodeling. Endometrial physiology relies on a complex interplay between the stromal and epithelial compartments with the former containing a mixture of fibroblasts, vascular, and immune cells. There is evidence for rare populations of putative mesenchymal progenitor cells located in the perivascular niche of human endometrium, but the existence of an equivalent cell population in mouse is unclear. We used the Pdgfrb‐BAC‐eGFP transgenic reporter mouse in combination with bulk and single‐cell RNA sequencing to redefine the endometrial mesenchyme. In contrast to previous reports we show that CD146 is expressed in both PDGFRβ + perivascular cells and CD31 + endothelial cells. Bulk RNAseq revealed cells in the perivascular niche which express the high levels of Pdgfrb as well as genes previously identified in pericytes and/or vascular smooth muscle cells (Acta2, Myh11, Olfr78, Cspg4, Rgs4, Rgs5, Kcnj8, and Abcc9). scRNA‐seq identified five subpopulations of cells including closely related pericytes/vascular smooth muscle cells and three subpopulations of fibroblasts. All three fibroblast populations were PDGFRα+/CD34 + but were distinct in their expression of Ngfr/Spon2/Angptl7 (F1), Cxcl14/Smoc2/Rgs2 (F2), and Clec3b/Col14a1/Mmp3 (F3), with potential functions in the regulation of immune responses, response to wounding, and organization of extracellular matrix, respectively. Immunohistochemistry was used to investigate the spatial distribution of these populations revealing F1/NGFR + cells in most abundance beside epithelial cells. We provide the first definitive analysis of mesenchymal cells in the adult mouse endometrium identifying five subpopulations providing a platform for comparisons between mesenchymal cells in endometrium and other adult tissues which are prone to fibrosis
Is shape in the eye of the beholder? Assessing landmarking error in geometric morphometric analyses on live fish
Geometric morphometrics is widely used to quantify morphological variation between biological specimens, but the fundamental influence of operator bias on data reproducibility is rarely considered, particularly in studies using photographs of live animals taken under field conditions. We examined this using four independent operators that applied an identical landmarking scheme to replicate photographs of 291 live Atlantic salmon (Salmo salar L.) from two rivers. Using repeated measures tests, we found significant inter-operator differences in mean body shape, suggesting that the operators introduced a systematic error despite following the same landmarking scheme. No significant differences were detected when the landmarking process was repeated by the same operator on a random subset of photographs. Importantly, in spite of significant operator bias, small but statistically significant morphological differences between fish from the two rivers were found consistently by all operators. Pairwise tests of angles of vectors of shape change showed that these between-river differences in body shape were analogous across operator datasets, suggesting a general reproducibility of findings obtained by geometric morphometric studies. In contrast, merging landmark data when fish from each river are digitised by different operators had a significant impact on downstream analyses, highlighting an intrinsic risk of bias. Overall, we show that, even when significant inter-operator error is introduced during digitisation, following an identical landmarking scheme can identify morphological differences between populations. This study indicates that operators digitising at least a sub-set of all data groups of interest may be an effective way of mitigating inter-operator error and potentially enabling data sharing
- …