2,975 research outputs found

    Testing EUV/X-ray Atomic Data for the Solar Dynamics Observatory

    Full text link
    The Atmospheric Imaging Assembly (AIA) and the Exteme-ultraviolet Variability Experiment (EVE) onboard the Solar Dynamics Observatory include spectral windows in the X-ray/EUV band. Accuracy and completeness of the atomic data in this wavelength range is essential for interpretation of the spectrum and irradiance of the solar corona, and of SDO observations made with the AIA and EVE instruments. Here we test the X-ray/EUV data in the CHIANTI database to assess their completeness and accuracy in the SDO bands, with particular focus on the 94A and 131A AIA passbands. Given the paucity of solar observations adequate for this purpose, we use high-resolution X-ray spectra of the low-activity solar-like corona of Procyon obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We find that while spectral models overall can reproduce quite well the observed spectra in the soft X-ray range ll 130A, they significantly underestimate the observed flux in the 50-130A wavelength range. The model underestimates the observed flux by a variable factor ranging from \approx 1.5, at short wavelengths below \sim50A, up to \approx5-7 in the \sim 70-125A range. In the AIA bands covered by LETGS, i.e. 94A and 131A, we find that the observed flux can be underestimated by large factors (\sim 3 and \sim 1.9 respectively, for the case of Procyon presented here). We discuss the consequences for analysis of AIA data and possible empirical corrections to the AIA responses to model more realistically the coronal emission in these passbands.Comment: 11 pages, 9 figures, accepted for publication on Ap

    Study of fuel cells using storable rocket propellants quarterly report no. 2, 18 may - 17 aug. 1965

    Get PDF
    Catalysts for Aerozine-50 reforming and nitrogen tetroxide decomposition for development of rocket fuel cells operating on storable propellan

    Optical Discovery of Probable Stellar Tidal Disruption Flares

    Get PDF
    Using archival Sloan Digital Sky Survey (SDSS) multi-epoch imaging data (Stripe 82), we have searched for the tidal disruption of stars by supermassive black holes in non-active galaxies. Two candidate tidal disruption events (TDEs) are identified. The TDE flares have optical blackbody temperatures of 2 × 10^4 K and observed peak luminosities of M_g = –18.3 and –20.4 (νL_ν = 5 × 10^(42), 4 × 10^(43) erg s^(–1), in the rest frame); their cooling rates are very low, qualitatively consistent with expectations for tidal disruption flares. The properties of the TDE candidates are examined using (1) SDSS imaging to compare them to other flares observed in the search, (2) UV emission measured by GALEX, and (3) spectra of the hosts and of one of the flares. Our pipeline excludes optically identifiable AGN hosts, and our variability monitoring over nine years provides strong evidence that these are not flares in hidden AGNs. The spectra and color evolution of the flares are unlike any SN observed to date, their strong late-time UV emission is particularly distinctive, and they are nuclear at high resolution arguing against these being first cases of a previously unobserved class of SNe or more extreme examples of known SN types. Taken together, the observed properties are difficult to reconcile with an SN or an AGN-flare explanation, although an entirely new process specific to the inner few hundred parsecs of non-active galaxies cannot be excluded. Based on our observed rate, we infer that hundreds or thousands of TDEs will be present in current and next-generation optical synoptic surveys. Using the approach outlined here, a TDE candidate sample with O(1) purity can be selected using geometric resolution and host and flare color alone, demonstrating that a campaign to create a large sample of TDEs, with immediate and detailed multi-wavelength follow-up, is feasible. A by-product of this work is quantification of the power spectrum of extreme flares in AGNs

    From X-ray dips to eclipse: Witnessing disk reformation in the recurrent nova USco

    Get PDF
    The 10th recorded outburst of the recurrent eclipsing nova USco was observed simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9 after outburst. Two full passages of the companion in front of the nova ejecta were observed, witnessing the reformation of the accretion disk. On day 22.9, we observed smooth eclipses in UV and optical but deep dips in the X-ray light curve which disappeared by day 34.9, then yielding clean eclipses in all bands. X-ray dips can be caused by clumpy absorbing material that intersects the line of sight while moving along highly elliptical trajectories. Cold material from the companion could explain the absence of dips in UV and optical light. The disappearance of X-ray dips before day 34.9 implies significant progress in the formation of the disk. The X-ray spectra contain photospheric continuum emission plus strong emission lines, but no clear absorption lines. Both continuum and emission lines in the X-ray spectra indicate a temperature increase from day 22.9 to day 34.9. We find clear evidence in the spectra and light curves for Thompson scattering of the photospheric emission from the white dwarf. Photospheric absorption lines can be smeared out during scattering in a plasma of fast electrons. We also find spectral signatures of resonant line scattering that lead to the observation of the strong emission lines. Their dominance could be a general phenomenon in high-inclination systems such as Cal87.Comment: Submitted to ApJ. 16 pages, 16 figure

    Chandra/ACIS-I study of the X-ray properties of the NGC 6611 and M16 stellar population

    Full text link
    Mechanisms regulating the origin of X-rays in YSOs and the correlation with their evolutionary stage are under debate. Studies of the X-ray properties in young clusters allow to understand these mechanisms. One ideal target for this analysis is the Eagle Nebula (M16), with its central cluster NGC6611. At 1750 pc from the Sun, it harbors 93 OB stars, together with a population of low-mass stars from embedded protostars to disk-less Class III objects, with age <= 3Myrs. We study an archival 78 ksec Chandra/ACIS-I observation of NGC6611, and two new 80ksec observations of the outer region of M16, one centered on the Column V, and one on a region of the molecular cloud with ongoing star-formation. We detect 1755 point sources, with 1183 candidate cluster members (219 disk-bearing and 964 disk-less). We study the global X-ray properties of M16 and compare them with those of the Orion Nebula Cluster. We also compare the level of X-ray emission of Class II and Class III stars, and analyze the X-ray spectral properties of OB stars. Our study supports the lower level of X-ray activity for the disk-bearing stars with respect to the disk-less members. The X-ray Luminosity Function (XLF) of M16 is similar to that of Orion, supporting the universality of the XLF in young clusters. 85% of the O stars of NGC6611 have been detected in X-rays. With only one possible exception, they show soft spectra with no hard component, indicating that mechanisms for the production of hard X-ray emission in O stars are not operating in NGC 6611.Comment: Accepted in Ap

    Stellar X-ray sources in the Chandra COSMOS survey

    Full text link
    We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160ks) and wide (0.9 deg2) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distances ranging from 30pc to ~12kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L_X-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more luminous than the active Sun, representing the high-luminosity end of the disk and halo X-ray luminosity functions. The halo population appears to include both low-activity spectrally hard sources that may be emitting through thermal bremsstrahlung, as well as a number of highly active sources in close binaries.Comment: 13 pages, 5 figures, accepted for publication in Ap

    The EUVE point of view of AD Leo

    Get PDF
    All the Extreme Ultraviolet Explorer (EUVE) observations of AD Leo, totalling 1.1 Ms of exposure time, have been employed to analyze the corona of this single M dwarf. The light curves show a well defined quiescent stage, and a distribution of amplitude of variability following a power law with a ~-2.4 index. The flaring behavior exhibits much similarity with other M active stars like FK Aqr or YY Gem, and flares behave differently from late type active giants and subgiants. The Emission Measure Distribution (EMD) of the summed spectrum, as well as that of quiescent and flaring stages, were obtained using a line-based method. The average EMD is dominated by material at log T(K)~6.9, with a second peak around log T(K)~6.3, and a large increase in the amount of material with log T(K)>~7.1 during flares, material almost absent during quiescence. The results are interpreted as the combination of three families of loops with maximum temperatures at log T(K)~6.3, ~6.9 and somewhere beyond log T(K)>~7.1. A value of the abundance of [Ne/Fe]=1.05+-0.08 was measured at log T(K)~5.9. No significative increment of Neon abundance was detected between quiescence and flaring states.Comment: Full PS version can be found also at http://www.astropa.unipa.it/~jsanz/papers0002.htm

    SN 2008iy: An Unusual Type IIn Supernova with an Enduring 400 Day Rise Time

    Full text link
    We present spectroscopic and photometric observations of the Type IIn supernova (SN) 2008iy. SN 2008iy showed an unprecedentedly long rise time of ~400 days, making it the first SN to take significantly longer than 100 days to reach peak optical luminosity. The peak absolute magnitude of SN 2008iy was M_r ~ -19.1 mag, and the total radiated energy over the first ~700 days was ~2 x 10^50 erg. Spectroscopically, SN 2008iy is very similar to the Type IIn SN 1988Z at late times, and, like SN 1988Z, it is a luminous X-ray source (both supernovae had an X-ray luminosity L_ X > 10^41 erg/s). The Halpha emission profile of SN 2008iy shows a narrow P Cygni absorption component, implying a pre-SN wind speed of ~100 km/s. We argue that the luminosity of SN 2008iy is powered via the interaction of the SN ejecta with a dense, clumpy circumstellar medium. The ~400 day rise time can be understood if the number density of clumps increases with distance over a radius ~1.7 x 10^16 cm from the progenitor. This scenario is possible if the progenitor experienced an episodic phase of enhanced mass-loss < 1 century prior to explosion or the progenitor wind speed increased during the decades before core collapse. We favour the former scenario, which is reminiscent of the eruptive mass-loss episodes observed for luminous blue variable (LBV) stars. The progenitor wind speed and increased mass-loss rates serve as further evidence that at least some, and perhaps all, Type IIn supernovae experience LBV-like eruptions shortly before core collapse. We also discuss the host galaxy of SN 2008iy, a subluminous dwarf galaxy, and offer a few reasons why the recent suggestion that unusual, luminous supernovae preferentially occur in dwarf galaxies may be the result of observational biases.Comment: 15 pages, 5 figures, MNRAS accepte
    corecore