15 research outputs found

    Non-monotonic size dependence of the elastic modulus of nanocrystalline ZnO embedded in a nanocrystalline silver matrix

    Full text link
    We present the first high pressure Raman study on nanocrystalline ZnO films with different average crystallite sizes. The problem of low Raman signals from nano sized particles was overcome by forming a nanocomposite of Ag and ZnO nanoparticles. The presence of the nanodispersed Ag particles leads to a substantial surface enhancement of the Raman signal from ZnO. We find that the elastic modulus of nanocrystalline ZnO shows a non-monotonic dependence on the crystallite size. We suggest that the non-monotonicity arises from an interplay between the elastic properties of the individual grains and the intergranular region.Comment: 10 pages, 6 figure

    Two-Dimensional Nanostrips of Hydrophobic Copper Tetradecanoate for Making Self-Cleaning Glasses

    Get PDF
    We report a simple, solution-based technique for coating arbitrary surfaces with thin layers of self-assembled copper tetradecanoate (CTD) nanostrips, resulting in an optically transparent, superhydrophobic coating. The nanostrip-coated surfaces show water contact angles close to 150° and roll-off angles as small as 2°-3°. Importantly, CTD retains its hydrophobic nature even after annealing the self-assembled nanostrips at 200°C, which does not alter the crystal structure but “melts” the surface microstructure. This clearly indicates that the hydrophobicity in CTD is likely to be intrinsic in nature and not induced by the surface microstructure (as has been suggested earlier). Strong hydrophobicity in CTD over a relatively wide temperature range presumably results from the presence of the long aliphatic (tetradecanoate) chains in its structure. Importantly, the self-assembled copper tetradecanoate nanostrips can be dip-coated on glass to render it hydrophobic and at the same time retain a significant level of transparency over the entire visible region. Such nanostructured thin films may be expected to find applications not only as a self-cleaning glass, but also as a corrosion resistant coating, in gas storage (due to the layered structure), and as an active catalyst because of the visible absorbance

    Large scale arrays of tunable microlenses

    Get PDF
    We demonstrate a simple and robust method to produce large 2-dimensional and quasi-3-dimensional arrays of tunable liquid microlenses using a time varying external electric field as the only control parameter. With increasing frequency, the shape of the individual lensing elements (~40 μm in diameter) evolves from an oblate (lentil shaped) to a prolate (egg shaped) spheroid, thereby making the focal length a tunable quantity. Moreover, such microlenses can be spatially localized in desired configurations by patterning the electrode. This system has the advantage that it provides a large dynamic range of shape deformation (with a response time of ~30 ms for the whole range of deformation), which is useful in designing adaptive optics

    High-Pressure Vibrational and Structural Studies of the Chemically Engineered Ferroelectric Phase of Sodium Niobate

    No full text
    Pure NaNbO3 has an antiferroelectric phase at ambient pressure. The structural behaviour of the chemically engineered ferroelectric phase of sodium niobate, NNBT05: [(0.95) NaNbO3-(0.05) BaTiO3], under high-pressure has been studied using Raman scattering and angle-dispersive synchrotron X-ray diffraction techniques. At pressure > 1 GPa, noticeable changes in the Raman spectra can be seen in the low wavenumber modes (150–300 cm−1). Large changes in the positions and intensities of the Raman bands as a function of pressure provide evidence for structural phase transition. The results indicate significant changes in the bond-lengths and the orientation of the NbO6 octahedra at ~1 GPa, and a transition to the paraelectric phase at ~5 GPa, which are at lower pressures than previously found in pure NaNbO3. The powder X-ray diffraction pattern shows an appreciable change in the peak profile in terms of position and width on increasing pressure. The pressure dependences of the structural parameters show that the response of the lattice parameters to pressure is strongly anisotropic. By fitting the pressure–volume data using the Birch–Murnaghan equation of state, the isothermal bulk modulus was estimated. The experimental results suggest that on doping BaTiO3 in NaNbO3, the bulk modulus increases. The bulk modulus of NNBT05 has been estimated to be 164.5 GPa, which is fairly close to 157.5 GPa, as previously observed in NaNbO3
    corecore