42 research outputs found

    Model development to measure resilience in adolescents

    Get PDF
    Title from PDF of title page, viewed on June 13, 2011Dissertation advisor: Jacob M. MarszalekVitaIncludes bibliographical references (p. 137-143)Thesis (Ph.D.)--School of Education. University of Missouri--Kansas City, 2011Coping with painful events and unpleasant emotions is a struggle for every human being. The ability to cope effectively with these events and emotions can be termed resilience (Blum, 1998). The study of resilience is based on strengths a person has and how difficulties in life can be overcome. It is this emphasis on strengths and positive assets that will be the focus of this model, rather than weakness or vulnerability. The focus of this study was to develop a model to aid researchers in measuring resilience in adolescents. Results provided evidence for a model containing sub dimensions of self-esteem, parental involvement, family relationships, other relationships, religion, neighborhood belonging, school belonging, and school safety.Introduction -- Literature review -- Method -- Results -- Appendix A. Tables -- Appendix B. Illustrations -- Appendix C. Resilience Model items -- Appendix D. Outcome items -- Appendix E. Covariate items -- Appendix F. Covariate-risk factor item relationships -- Appendix G. Correlations for the overall measurement model -- Appendix H. Descriptive statistics for all item

    Fibrinogen regulates the cytotoxicity of mycobacterial trehalose dimycolate, but is not required for cell recruitment, cytokine response, or control of mycobacterial infection

    Get PDF
    During inflammatory responses and wound healing, the conversion of soluble fibrinogen to fibrin, an insoluble extracellular matrix, long has been assumed to create a scaffold for the migration of leukocytes and fibroblasts. Previous studies concluded that fibrinogen is a necessary cofactor for mycobacterial trehalose 6,6-dimycolate-induced responses, because trehalose dimycolate-coated beads, to which fibrinogen was ad-sorbed, were more inflammatory than those to which other plasma proteins were adsorbed. Herein, we investigate roles for fibrin(ogen) in an in vivo model of mycobacterial granuloma formation and in infection with Mycobacterium tuberculosis, the causative agent of tuberculosis. In wild-type mice, the subcutaneous injection of trehalose dimycolate-coated polystyrene microspheres, suspended within Matrigel, elicited a pyogranulomatous response during the course of 12 days. In fibrinogen-deficient mice, neutrophils were recruited but a more suppurative lesion developed, with the marked degradation and disintegration of the matrix. Compared to that in wild-type mice, the early formation of granulation tissue in fibrinogen-deficient mice was edematous, hypocellular, and disorganized. These deficiencies were complemented by the addition of exogenous fibrinogen. The absence of fibrinogen had no effect on cell recruitment or cytokine production i

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program “Advanced Instrumentation for Wildlife Protection”, Fondation Segré, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier d’Auvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governor’s Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Özkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, værdier og værktøjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de Doué-la-Fontaine, Zoo Dresden, Zoo Idaho, Kolmården Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y Tecnología (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the “Investissements d’avenir” program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMéRA/Aix-Marseille Université, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Beyond Capture: Development and Validation of a Method to Assess Body Condition in Mule Deer (Odocoileus hemionus) Using Camera Traps

    Get PDF
    Advances in technology and availability associated with camera traps have resulted in a rapid rise in their use to monitor wildlife distribution, abundance, and behavior. We focus on assessing body condition, a new application of camera traps. Body condition indices must relate to the percent body fat if they are to be useful. To acquire measurements of body fat, most body condition indices require capture or mortality of animals to estimate, which has limitations when applied to free-ranging animals. We developed a non-invasive, visual body condition index (VBCI) to assess body condition of mule deer that can be applied to camera trap images or videos. The VBCI was based on the visibility of five bone regions, the scapula, spinal ridge, ribs, tuber ischium, and tuber ilium, which are covered in varying amounts of subcutaneous fat. We compared the VBCI to known values of ingesta-free body fat, obtained from ultrasonography and physical palpation of captured mule deer. Our VBCI was positively related to percent ingesta-free body fat (R2=0.23, p\u3c0.001). Additionally, the bone regions evaluated were each correlated with the percent ingesta-free body fat. Using Spearman’s correlation, the scapula is the region most highly correlated to ingesta-free body fat (0.44, p\u3c0.001), followed by the ischium (0.36, p\u3c0.001), ilium (0.35, p\u3c0.001), spinal ridge (0.31, p\u3c0.001), and ribcage (0.12, p\u3c0.01). Based on the relationships between VBCI and ingesta-free body fat, we developed two visual body condition indices, one that requires a broadside orientation to the camera (VBCI-1) and one that is applicable when a deer is quartered towards the camera (VBCI-2). Potential applications of the VBCI include evaluating relationships between body condition and habitat enhancements, habitat disturbances, population performances, and weather

    Reintroduction of immunosuppressive medications in pediatric rheumatology patients with histoplasmosis: a case series

    No full text
    Abstract Background Children with rheumatic diseases (cRD) receiving immunosuppressive medications (IM) are at a higher risk for acquiring potentially lethal pathogens, including Histoplasma capsulatum (histoplasmosis), a fungal infection that can lead to prolonged hospitalization, organ damage, and death. Withholding IM during serious infections is recommended yet poses risk of rheumatic disease flares. Conversely, reinitiating IM increases risk for infection recurrence. Tumor necrosis factor alpha inhibitor (TNFai) biologic therapy carries the highest risk for histoplasmosis infection after epidemiological exposure, so other IM are preferred during active histoplasmosis infection. There is limited guidance as to when and how IM can be reinitiated in cRD with histoplasmosis. This case series chronicles resumption of IM, including non-TNFai biologics, disease-modifying anti-rheumatic drugs (DMARDs), and corticosteroids, following histoplasmosis among cRD. Case presentation We examine clinical characteristics and outcomes of 9 patients with disseminated or pulmonary histoplasmosis and underlying rheumatic disease [juvenile idiopathic arthritis (JIA), childhood-onset systemic lupus erythematosus (cSLE), and mixed connective tissue disease (MCTD)] after reintroduction of IM. All DMARDs and biologics were halted at histoplasmosis diagnosis, except hydroxychloroquine (HCQ), and patients began antifungals. Following IM discontinuation, all patients required systemic or intra-articular steroids during histoplasmosis treatment, with 4/9 showing Cushingoid features. Four patients began new IM regimens [2 abatacept (ABA), 1 HCQ, and 1 methotrexate (MTX)] while still positive for histoplasmosis, with 3/4 (ABA, MTX, HCQ) later clearing their histoplasmosis and 1 (ABA) showing decreasing antigenemia. Collectively, 8/9 patients initiated or continued DMARDs and/or non-TNFai biologic use (5 ABA, 1 tocilizumab, 1 ustekinumab, 3 MTX, 4 HCQ, 1 leflunomide). No fatalities, exacerbations, or recurrences of histoplasmosis occurred during follow-up (median 33 months). Conclusions In our cohort of cRD, histoplasmosis course following reintroduction of non-TNFai IM was favorable, but additional studies are needed to evaluate optimal IM management during acute histoplasmosis and recovery. In this case series, non-TNFai biologic, DMARD, and steroid treatments did not appear to cause histoplasmosis recurrence. Adverse events from corticosteroid use were common. Further research is needed to implement guidelines for optimal use of non-TNFai (like ABA), DMARDs, and corticosteroids in cRD following histoplasmosis presentation
    corecore