59 research outputs found

    Enhancing Learning for a New Graduate Registered Nurse in an Australian Day Surgery Unit

    Get PDF
    New Graduate programs for the newly registered nurses (RN) have become common place in Australia. These targeted programs are designed to enable the new RN to be exposed to a number of areas in nursing, assist the new graduate (NG) nurse to build on existing knowledge and skills, and to enhance confidence and competence in their new role as a registered nurse (RN). The work environment in nursing is constantly changing and new RNs are learning and developing skills every day. This article will present an overview of how one Australian Day Surgery unit in Sydney, Australia has positively enhanced the learning of NG nurses

    Do Childbirth and Early Parenting Programs Meet the Needs of the Client?

    Get PDF
    The Childbirth Education Association of Australia (NSW) Ltd (CEA) completed a non-randomized, prospective study of clients attending its antenatal program over a twelve-month period in 1997. The aim of the study was to establish if the program offered met the needs of their clients

    A large scale hearing loss screen reveals an extensive unexplored genetic landscape for auditory dysfunction

    Get PDF
    The developmental and physiological complexity of the auditory system is likely reflected in the underlying set of genes involved in auditory function. In humans, over 150 non-syndromic loci have been identified, and there are more than 400 human genetic syndromes with a hearing loss component. Over 100 non-syndromic hearing loss genes have been identified in mouse and human, but we remain ignorant of the full extent of the genetic landscape involved in auditory dysfunction. As part of the International Mouse Phenotyping Consortium, we undertook a hearing loss screen in a cohort of 3006 mouse knockout strains. In total, we identify 67 candidate hearing loss genes. We detect known hearing loss genes, but the vast majority, 52, of the candidate genes were novel. Our analysis reveals a large and unexplored genetic landscape involved with auditory function

    MouseBook: an integrated portal of mouse resources

    Get PDF
    The MouseBook (http://www.mousebook.org) databases and web portal provide access to information about mutant mouse lines held as live or cryopreserved stocks at MRC Harwell. The MouseBook portal integrates curated information from the MRC Harwell stock resource, and other Harwell databases, with information from external data resources to provide value-added information above and beyond what is available through other routes such as International Mouse Stain Resource (IMSR). MouseBook can be searched either using an intuitive Google style free text search or using the Mammalian Phenotype (MP) ontology tree structure. Text searches can be on gene, allele, strain identifier (e.g. MGI ID) or phenotype term and are assisted by automatic recognition of term types and autocompletion of gene and allele names covered by the database. Results are returned in a tabbed format providing categorized results identified from each of the catalogs in MouseBook. Individual result lines from each catalog include information on gene, allele, chromosomal location and phenotype, and provide a simple click-through link to further information as well as ordering the strain. The infrastructure underlying MouseBook has been designed to be extensible, allowing additional data sources to be added and enabling other sites to make their data directly available through MouseBook

    Effects of N-Glycosylation Site Removal in Archaellins on the Assembly and Function of Archaella in Methanococcus maripaludis

    Get PDF
    In Methanococcus maripaludis S2, the swimming organelle, the archaellum, is composed of three archaellins, FlaB1S2, FlaB2S2 and FlaB3S2. All three are modified with an N-linked tetrasaccharide at multiple sites. Disruption of the N-linked glycosylation pathway is known to cause defects in archaella assembly or function. Here, we explored the potential requirement of N-glycosylation of archaellins on archaellation by investigating the effects of eliminating the 4 N-glycosylation sites in the wildtype FlaB2S2 protein in all possible combinations either by Asn to Glu (N to Q) substitution or Asn to Asp (N to D) substitutions of the N-glycosylation sequon asparagine. The ability of these mutant derivatives to complement a non-archaellated ΔflaB2S2 strain was examined by electron microscopy (for archaella assembly) and swarm plates (for analysis of swimming). Western blot results showed that all mutated FlaB2S2 proteins were expressed and of smaller apparent molecular mass compared to wildtype FlaB2S2, consistent with the loss of glycosylation sites. In the 8 single-site mutant complements, archaella were observed on the surface of Q2, D2 and D4 (numbers after N or Q refer to the 1st to 4th glycosylation site). Of the 6 double-site mutation complementations all were archaellated except D1,3. Of the 4 triple-site mutation complements, only D2,3,4 was archaellated. Elimination of all 4 N-glycosylation sites resulted in non-archaellated cells, indicating some minimum amount of archaellin glycosylation was necessary for their incorporation into stable archaella. All complementations that led to a return of archaella also resulted in motile cells with the exception of the D4 version. In addition, a series of FlaB2S2 scanning deletions each missing 10 amino acids was also generated and tested for their ability to complement the ΔflaB2S2 strain. While most variants were expressed, none of them restored archaellation, although FlaB2S2 harbouring a smaller 3-amino acid deletion was able to partially restore archaellation

    Pathogenic SPTBN1 variants cause an autosomal dominant neurodevelopmental syndrome

    Get PDF
    SPTBN1 mutations cause a neurodevelopmental syndrome characterized by intellectual disability, language and motor delays, autism, seizures and other features. The variants disrupt beta II-spectrin function and disturb cytoskeletal organization and dynamics. SPTBN1 encodes beta II-spectrin, the ubiquitously expressed beta-spectrin that forms micrometer-scale networks associated with plasma membranes. Mice deficient in neuronal beta II-spectrin have defects in cortical organization, developmental delay and behavioral deficiencies. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous SPTBN1 variants may also show measurable compromise of neural development and function. Here we identify heterozygous SPTBN1 variants in 29 individuals with developmental, language and motor delays;mild to severe intellectual disability;autistic features;seizures;behavioral and movement abnormalities;hypotonia;and variable dysmorphic facial features. We show that these SPTBN1 variants lead to effects that affect beta II-spectrin stability, disrupt binding to key molecular partners, and disturb cytoskeleton organization and dynamics. Our studies define SPTBN1 variants as the genetic basis of a neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and underscore the critical role of beta II-spectrin in the central nervous system

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Review: Issues with e-Learning in Nursing and Health Education in the UK; Are New Technologies Being Embraced in the Teaching and Learning Environments?

    No full text
    This paper discusses how nursing and health science disciplines have embraced e-learning in order to attract learners\u27 worldwide with its accessiblity and convenienc

    Developing the nurse professional and nurse education for the 21st century

    No full text
    The purpose of this portfolio was to establish what educational strategies would enhance the professional education for the nurse of the future. Through an examination of various contemporary educational theorists\u27 work. a conceptual framework was developed using the concepts of Hargreaves (2003) as an overarching model to establish the current positioning of nursing and nursing education in the knowledge society. The preparation ofa nurse who can function effectively and efficiently within a rapidly changing health workplace relies heavily on educational preparation that includes the development of knowledge, skills and attitudes appropriate for the role. This portfolio has examined critical aspects of nursing and nurse education in relation to the development of these necessary areas for future nurse professionals
    corecore