25 research outputs found
Non-Overlapping Functions for Pyk2 and FAK in Osteoblasts during Fluid Shear Stress-Induced Mechanotransduction
Mechanotransduction, the process by which cells convert external mechanical stimuli such as fluid shear stress (FSS) into biochemical changes, plays a critical role in maintenance of the skeleton. We have proposed that mechanical stimulation by FSS across the surfaces of bone cells results in formation of unique signaling complexes called mechanosomes that are launched from sites of adhesion with the extracellular matrix and with other bone cells [1]. Deformation of adhesion complexes at the cell membrane ultimately results in alteration of target gene expression. Recently, we reported that focal adhesion kinase (FAK) functions as a part of a mechanosome complex that is required for FSS-induced mechanotransduction in bone cells. This study extends this work to examine the role of a second member of the FAK family of non-receptor protein tyrosine kinases, proline-rich tyrosine kinase 2 (Pyk2), and determine its role during osteoblast mechanotransduction. We use osteoblasts harvested from mice as our model system in this study and compared the contributions of Pyk2 and FAK during FSS induced mechanotransduction in osteoblasts. We exposed Pyk2+/+ and Pyk2−/− primary calvarial osteoblasts to short period of oscillatory fluid flow and analyzed downstream activation of ERK1/2, and expression of c-fos, cyclooxygenase-2 and osteopontin. Unlike FAK, Pyk2 was not required for fluid flow-induced mechanotransduction as there was no significant difference in the response of Pyk2+/+ and Pyk2−/− osteoblasts to short periods of fluid flow (FF). In contrast, and as predicted, FAK−/− osteoblasts were unable to respond to FF. These data indicate that FAK and Pyk2 have distinct, non-redundant functions in launching mechanical signals during osteoblast mechanotransduction. Additionally, we compared two methods of generating FF in both cell types, oscillatory pump method and another orbital platform method. We determined that both methods of generating FF induced similar responses in both primary calvarial osteoblasts and immortalized calvarial osteoblasts
Fluid flow in the osteocyte mechanical environment : a fluid-structure interaction approach
Osteocytes are believed to be the primary sensor of mechanical stimuli in bone, which orchestrate osteoblasts and osteoclasts to adapt bone structure and composition to meet physiological loading demands. Experimental studies to quantify the mechanical environment surrounding bone cells are challenging, and as such, computational and theoretical approaches have modelled either the solid or fluid environment of osteocytes to predict how these cells are stimulated in vivo. Osteocytes are an elastic cellular structure that deforms in response to the external fluid flow imposed by mechanical loading. This represents a most challenging multi-physics problem in which fluid and solid domains interact, and as such, no previous study has accounted for this complex behaviour. The objective of this study is to employ fluid–structure interaction (FSI) modelling to investigate the complex mechanical environment of osteocytes in vivo. Fluorescent staining of osteocytes was performed in order to visualise their native environment and develop geometrically accurate models of the osteocyte in vivo. By simulating loading levels representative of vigorous physiological activity (3,000με compression and 300 Pa pressure gradient), we predict average interstitial fluid velocities (∼60.5μ m/s ) and average maximum shear stresses (∼11 Pa ) surrounding osteocytes in vivo. Interestingly, these values occur in the canaliculi around the osteocyte cell processes and are within the range of stimuli known to stimulate osteogenic responses by osteoblastic cells in vitro. Significantly our results suggest that the greatest mechanical stimulation of the osteocyte occurs in the cell processes, which, cell culture studies have indicated, is the most mechanosensitive area of the cell. These are the first computational FSI models to simulate the complex multi-physics mechanical environment of osteocyte in vivo and provide a deeper understanding of bone mechanobiology
Subcortical neural synchrony and absolute thresholds predict frequency discrimination independently
The neural mechanisms of pitch coding have been debated for more than a century. The two main mechanisms are coding based on the profiles of neural firing rates across auditory nerve fibers with different characteristic frequencies (place-rate coding), and coding based on the phase-locked temporal pattern of neural firing (temporal coding). Phase locking precision can be partly assessed by recording the frequency-following response (FFR), a scalp-recorded electrophysiological response that reflects synchronous activity in subcortical neurons. Although features of the FFR have been widely used as indices of pitch coding acuity, only a handful of studies have directly investigated the relation between the FFR and behavioral pitch judgments. Furthermore, the contribution of degraded neural synchrony (as indexed by the FFR) to the pitch perception impairments of older listeners and those with hearing loss is not well known. Here, the relation between the FFR and pure-tone frequency discrimination was investigated in listeners with a wide range of ages and absolute thresholds, to assess the respective contributions of subcortical neural synchrony and other age-related and hearing loss-related mechanisms to frequency discrimination performance. FFR measures of neural synchrony and absolute thresholds independently contributed to frequency discrimination performance. Age alone, i.e., once the effect of subcortical neural synchrony measures or absolute thresholds had been partialed out, did not contribute to frequency discrimination. Overall, the results suggest that frequency discrimination of pure tones may depend both on phase locking precision and on separate mechanisms affected in hearing loss