70 research outputs found

    Cell cycle progression after cleavage failure: mammalian somatic cells do not possess a “tetraploidy checkpoint”

    Get PDF
    Failure of cells to cleave at the end of mitosis is dangerous to the organism because it immediately produces tetraploidy and centrosome amplification, which is thought to produce genetic imbalances. Using normal human and rat cells, we reexamined the basis for the attractive and increasingly accepted proposal that normal mammalian cells have a “tetraploidy checkpoint” that arrests binucleate cells in G1, thereby preventing their propagation. Using 10 μM cytochalasin to block cleavage, we confirm that most binucleate cells arrest in G1. However, when we use lower concentrations of cytochalasin, we find that binucleate cells undergo DNA synthesis and later proceed through mitosis in >80% of the cases for the hTERT-RPE1 human cell line, primary human fibroblasts, and the REF52 cell line. These observations provide a functional demonstration that the tetraploidy checkpoint does not exist in normal mammalian somatic cells

    The interrelationship between APC/C and Plk1 activities in centriole disengagement

    Get PDF
    Mother-daughter centriole disengagement, the necessary first step in centriole duplication, involves Plk1 activity in early mitosis and separase activity after APC/C activity mediates securin degradation. Plk1 activity is thought to be essential and sufficient for centriole disengagement with separase activity playing a supporting but non-essential role. In separase null cells, however, centriole disengagement is substantially delayed. The ability of APC/C activity alone to mediate centriole disengagement has not been directly tested. We investigate the interrelationship between Plk1 and APC/C activities in disengaging centrioles in S or G2 HeLa and RPE1 cells, cell types that do not reduplicate centrioles when arrested in S phase. Knockdown of the interphase APC/C inhibitor Emi1 leads to centriole disengagement and reduplication of the mother centrioles, though this is slow. Strong inhibition of Plk1 activity, if any, during S does not block centriole disengagement and mother centriole reduplication in Emi1 depleted cells. Centriole disengagement depends on APC/C-Cdh1 activity, not APC/C-Cdc20 activity. Also, Plk1 and APC/C-Cdh1 activities can independently promote centriole disengagement in G2 arrested cells. Thus, Plk1 and APC/C-Cdh1 activities are independent but slow pathways for centriole disengagement. By having two slow mechanisms for disengagement working together, the cell ensures that centrioles will not prematurely separate in late G2 or early mitosis, thereby risking multipolar spindle assembly, but rather disengage in a timely fashion only late in mitosis

    Regulation of cell cycle by the anaphase spindle midzone

    Get PDF
    BACKGROUND: A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. RESULTS: We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. CONCLUSIONS: We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle

    The Zn-finger domain of MdmX suppresses cancer progression by promoting genome stability in p53-mutant cells

    Get PDF
    The MDMX (MDM4) oncogene is amplified or overexpressed in a significant percentage of human tumors. MDMX is thought to function as an oncoprotein by binding p53 tumor suppressor protein to inhibit p53-mediated transcription, and by complexing with MDM2 oncoprotein to promote MDM2-mediated degradation of p53. However, down-regulation or loss of functional MDMX has also been observed in a variety of human tumors that are mutated for p53, often correlating with more aggressive cancers and a worse patient prognosis. We have previously reported that endogenous levels of MdmX can suppress proliferation and promote pseudo-bipolar mitosis in primary and tumor cells derived from p53-deficient mice, and that MdmX-p53 double deficient mice succumb to spontaneously formed tumors more rapidly than p53-deficient mice. These results suggest that the MdmX oncoprotein may act as a tumor-suppressor in cancers with compromised p53 function. By using orthotopic transplantation and lung colonization assays in mice we now establish a p53-independent anti-oncogenic role for MdmX in tumor progression. We also demonstrate that the roles of MdmX in genome stability and in proliferation are two distinct functions encoded by the separate MdmX protein domains. The central Zn-finger domain suppresses multipolar mitosis and chromosome loss, whereas the carboxy-terminal RING domain suppresses proliferation of p53-deficient cells. Furthermore, we determine that it is the maintenance of genome stability that underlies MdmX role in suppression of tumorigenesis in hyperploid p53 mutant tumors. Our results offer a rationale for the increased metastatic potential of p53 mutant human cancers with aberrant MdmX function and provide a caveat for the application of anti-MdmX treatment of tumors with compromised p53 activity

    Nucleo-cytoplasmic interactions that control nuclear envelope breakdown and entry into mitosis in the sea urchin zygote

    Get PDF
    In sea urchin zygotes and mammalian cells nuclear envelope breakdown (NEB) is not driven simply by a rise in cytoplasmic cyclin dependent kinase 1-cyclin B (Cdk1-B) activity; the checkpoint monitoring DNA synthesis can prevent NEB in the face of mitotic levels of Cdk1-B. Using sea urchin zygotes we investigated whether this checkpoint prevents NEB by restricting import of regulatory proteins into the nucleus. We find that cyclin B1-GFP accumulates in nuclei that cannot complete DNA synthesis and do not break down. Thus, this checkpoint limits NEB downstream of both the cytoplasmic activation and nuclear accumulation of Cdk1-B1. In separate experiments we fertilize sea urchin eggs with sperm whose DNA has been covalently cross-linked to inhibit replication. When the pronuclei fuse, the resulting zygote nucleus does not break down for \u3e180 minutes (equivalent to three cell cycles), even though Cdk1-B activity rises to greater than mitotic levels. If pronuclear fusion is prevented, then the female pronucleus breaks down at the normal time (average 68 minutes) and the male pronucleus with cross-linked DNA breaks down 16 minutes later. This male pronucleus has a functional checkpoint because it does not break down for \u3e120 minutes if the female pronucleus is removed just prior to NEB. These results reveal the existence of an activity released by the female pronucleus upon its breakdown, that overrides the checkpoint in the male pronucleus and induces NEB. Microinjecting wheat germ agglutinin into binucleate zygotes reveals that this activity involves molecules that must be actively translocated into the male pronucleus

    De novo formation of centrosomes in vertebrate cells arrested during S phase

    Get PDF
    The centrosome usually replicates in a semiconservative fashion, i.e., new centrioles form in association with preexisting “maternal” centrioles. De novo formation of centrioles has been reported for a few highly specialized cell types but it has not been seen in vertebrate somatic cells. We find that when centrosomes are completely destroyed by laser microsurgery in CHO cells arrested in S phase by hydroxyurea, new centrosomes form by de novo assembly. Formation of new centrosomes occurs in two steps: ∼5–8 h after ablation, clouds of pericentriolar material (PCM) containing γ-tubulin and pericentrin appear in the cell. By 24 h, centrioles have formed inside of already well-developed PCM clouds. This de novo pathway leads to the formation of a random number of centrioles (2–14 per cell). Although clouds of PCM consistently form even when microtubules are completely disassembled by nocodazole, the centrioles are not assembled under these conditions

    The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation

    Get PDF
    It has been reported that nontransformed mammalian cells become arrested during G1 in the absence of centrioles (Hinchcliffe, E., F. Miller, M. Cham, A. Khodjakov, and G. Sluder. 2001. Science. 291:1547–1550). Here, we show that removal of resident centrioles (by laser ablation or needle microsurgery) does not impede cell cycle progression in HeLa cells. HeLa cells born without centrosomes, later, assemble a variable number of centrioles de novo. Centriole assembly begins with the formation of small centrin aggregates that appear during the S phase. These, initially amorphous “precentrioles” become morphologically recognizable centrioles before mitosis. De novo–assembled centrioles mature (i.e., gain abilities to organize microtubules and replicate) in the next cell cycle. This maturation is not simply a time-dependent phenomenon, because de novo–formed centrioles do not mature if they are assembled in S phase–arrested cells. By selectively ablating only one centriole at a time, we find that the presence of a single centriole inhibits the assembly of additional centrioles, indicating that centrioles have an activity that suppresses the de novo pathway

    Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research

    Get PDF
    Long before scientists learned to grow miniature organs from human cells in a dish, biological research was performed using organisms that were accessible: garden peas, sea urchins collected at low tide, newt eggs, and flies circling rotten fruit. These organisms help us to understand the world around us, attracting and inspiring each new generation of scientists with the promise of mystery and discovery. Subsequent studies repeatedly showed that fundamental biological mechanisms discovered in such simple organisms are conserved in more complex organisms, including humans. Yet, biologists are increasingly being tasked with problem solving rather than being allowed to follow the path of discovery. Here, we provide examples of important lessons learned fromresearch using selected non-vertebrate organisms. We argue that, for the purpose of understanding human disease, simple organisms cannot and should not be replaced solely by human-cell-based culture systems. Rather, these organisms serve as powerful discovery tools for new knowledge that may subsequently be tested for conservation in human-cell-based culture systems. In this way, curiosity-driven biological research in simple organisms has and will continue to pay huge dividends in both the short and long run for improving the human condition

    p53 protects against genome instability following centriole duplication failure

    Get PDF
    Centriole function has been difficult to study because of a lack of specific tools that allow persistent and reversible centriole depletion. Here we combined gene targeting with an auxin-inducible degradation system to achieve rapid, titratable, and reversible control of Polo-like kinase 4 (Plk4), a master regulator of centriole biogenesis. Depletion of Plk4 led to a failure of centriole duplication that produced an irreversible cell cycle arrest within a few divisions. This arrest was not a result of a prolonged mitosis, chromosome segregation errors, or cytokinesis failure. Depleting p53 allowed cells that fail centriole duplication to proliferate indefinitely. Washout of auxin and restoration of endogenous Plk4 levels in cells that lack centrioles led to the penetrant formation of de novo centrioles that gained the ability to organize microtubules and duplicate. In summary, we uncover a p53-dependent surveillance mechanism that protects against genome instability by preventing cell growth after centriole duplication failure
    corecore