659 research outputs found
Optical far-infrared properties of graphene monolayer and multilayers
We analyze the features of the graphene mono- and multilayer reflectance in
the far-infrared region as a function of frequency, temperature, and carrier
density taking the intraband conductance and the interband electron absorbtion
into account. The dispersion of plasmon mode of the multilayers is calculated
using Maxwell's equations with the influence of retardation included. At low
temperatures and high electron densities, the reflectance of multilayers as a
function of frequency has the sharp downfall and the subsequent deep well due
to the threshold of electron interband absorbtion.Comment: 9 pages, 4 figure
Current-Induced Magnetization Reversal in High Magnetic Fields in Co/Cu/Co Nanopillars
Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars
(~100nm in diameter) has been studied experimentally for large applied fields
perpendicular to the layers. An abrupt and hysteretic increase in dynamic
resistance is observed at high current densities for one polarity of the
current, comparable to the giant magnetoresistance effect observed at low
fields. A micromagnetic model, that includes a spin-transfer torque, suggests
that the current induces a complete reversal of the thin Co layer to alignment
antiparallel to the applied field-that is, to a state of maximum magnetic
energy.Comment: 11 pages, 3 figures, (submitted to Phys. Rev. Lett.), added missing
figure caption of fig. 3, updated to published versio
Current-induced spin-wave excitations in a single ferromagnetic layer
A new current induced spin-torque transfer effect has been observed in a
single ferromagnetic layer without resorting to multilayers. At a specific
current density of one polarity injected from a point contact, abrupt
resistance changes due to current-induced spin wave excitations have been
observed. The critical current at the onset of spin-wave excitations depends
linearly on the external field applied perpendicular to the layer. The observed
effect is due to current-driven heterogeneity in an otherwise uniform
ferromagnetic layer.Comment: 12 pages, 4 figure
Dynamics of Domain Wall in a Biaxial Ferromagnet With Spin-torque
The dynamics of the domain wall (DW) in a biaxial ferromagnet interacting
with a spin-polarized current are described by sine-gordon (SG) equation
coupled with Gilbert damping term in this paper. Within our frame-work of this
model, we obtain a threshold of the current in the motion of a single DW with
the perturbation theory on kink soliton solution to the corresponding
ferromagnetic system, and the threshold is shown to be dependent on the Gilbert
damping term. Also, the motion properties of the DW are discussed for the zero-
and nonzero-damping cases, which shows that our theory to describe the dynamics
of the DW are self-consistent.Comment: 7pages, 3figure
Theory of the spin-torque-driven ferromagnetic resonance in a ferromagnet/normal-metal/ferromagnet structure
We present a theoretical analysis of current driven ferromagnetic resonance
in a ferromagnet/normal-metal/ferromagnet tri-layer. This method of driving
ferromagnetic resonance was recently realized experimentally by Tulapurkar et
al. [Nature 438, 339 (2005)] and Sankey et al. [Phys. Rev. Lett. 96, 227601
(2006)]. The precessing magnetization rectifies the alternating current applied
to drive the ferromagnetic resonance and leads to the generation of a dc
voltage. Our analysis shows that a second mechanism to generate a dc voltage,
rectification of spin currents emitted by the precessing magnetization, has a
contribution to the dc voltage that is of approximately equal size for the thin
ferromagnetic films used in the experiment.Comment: 6 pages, 1 figure, final version. Changed title, updated references,
added discussions in section I
Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy
This paper reports the solution of the equation of motion for a domain wall
in a magnetic material which exhibits high magneto-crystalline anisotropy.
Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion,
we solve the equation to give an analytical expression, which specifies the
domain wall position as a function of time. Taking parameters from a Co/Pt
multilayer system, we find good quantitative agreement between calculated and
experimentally determined wall velocities, and show that high field uniform
wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure
Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions
Application of Bardeen's tunneling theory to magnetic tunnel junctions having
a general degree of atomic disorder reveals the close relationship between
magneto-conduction and voltage-driven pseudo-torque, as well as the thickness
dependence of tunnel-polarization factors. Among the results: 1) The torque
generally varies as sin theta at constant applied voltage. 2) Whenever
polarization factors are well defined, the voltage-driven torque on each moment
is uniquely proportional to the polarization factor of the other magnet. 3) At
finite applied voltage, this relation predicts significant voltage-asymmetry in
the torque. For one sign of voltage the torque remains substantial even when
the magnetoconductance is greatly diminished. 4) A broadly defined junction
model, called ideal middle, allows for atomic disorder within the magnets and
F/I interface regions. In this model, the spin dependence of a state-weighting
factor proportional to the sum over general state index of evaluated within the
(e.g. vacuum) barrier generalizes the local state density in previous theories
of the tunnel-polarization factor. 5) For small applied voltage,
tunnel-polarization factors remain legitimate up to first order in the inverse
thickness of the ideal middle. An algebraic formula describes the first-order
corrections to polarization factors in terms of newly defined lateral
auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few
notations and equations are changed, and references completed. No change in
results. 17 pages including 4 figure
Thermal rounding of the depinning transition in ultrathin Pt/Co/Pt films
We perform a scaling analysis of the mean velocity of extended magnetic
domain walls driven in ultrathin Pt/Co/Pt ferromagnetic films with
perpendicular anisotropy, as a function of the applied external field for
different film-thicknesses. We find that the scaling of the experimental data
around the thermally rounded depinning transition is consistent with the
universal depinning exponents theoretically expected for elastic interfaces
described by the one-dimensional quenched Edwards-Wilkinson equation. In
particular, values for the depinning exponent and thermal rounding
exponent are tested and the present analysis of the experimental data is
compatible with and , in agreement with numerical
simulations.Comment: 8 pages, 8 figure
Mechanisms of spin-polarized current-driven magnetization switching
The mechanisms of the magnetization switching of magnetic multilayers driven
by a current are studied by including exchange interaction between local
moments and spin accumulation of conduction electrons. It is found that this
exchange interaction leads to two additional terms in the
Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both
terms are proportional to the transverse spin accumulation and have comparable
magnitudes
Rotating vortex dipoles in ferromagnets
Vortex-antivortex pairs are localized excitations and have been found to be
spontaneously created in magnetic elements. In the case that the vortex and the
antivortex have opposite polarities the pair has a nonzero topological charge,
and it behaves as a rotating vortex dipole. We find theoretically, and confirm
numerically, the form of the energy as a function of the angular momentum of
the system and the associated rotation frequencies. We discuss the process of
annihilation of the pair which changes the topological charge of the system by
unity while its energy is monotonically decreasing. Such a change in the
topological charge affects profoundly the dynamics in the magnetic system. We
finally discuss the connection of our results with Bloch Points (BP) and the
implications for BP dynamics.Comment: 6 pages, 2 figure
- …