1,073 research outputs found

    Seabird metapopulations: searching for alternative breeding habitats

    Get PDF
    Today, many seabird species nest in port areas, which are also necessary for human economic activity. In this paper, we evaluate, using a metapopulation model, the possibilities for creating alternative breeding sites for the Common Tern (Sterna hirundo) in the Rhine¿Meuse¿Scheldt estuary. We explore 22 scenarios that differ with respect to (1) loss of breeding habitat in port areas, (2) location and size of newly created habitat, and (3) coexistence of old and new habitat. Results indicate that loss of port area habitats results in a serious 41% decline in the breeding population. When the loss in ports is compensated for within the ports, the decline was negligible. Fourteen scenarios result in an increase of the Common Tern metapopulation. In these, extra breeding habitat is created outside the ports in fish-rich waters, resulting in a potential metapopulation increase of 25%. However, the period of overlap between lost and newly created habitat strongly affects the results. A gap between the removal of old and the creation of new breeding areas might cause a drop in the metapopulation level of 30%. The population recovery from this drop might take more than 100 years due to slow recolonization. Our results suggest that conservation of seabird species should be evaluated on a metapopulation scale and that the creation of new habitat may help to compensate for habitat loss in other areas. Furthermore, the results indicate that overlap between the existence of old and newly created breeding habitats is crucial for the success of compensation efforts. However, new locations should be carefully selected, because not only is the suitability of the breeding grounds important, but ample fish availability nearby is also ke

    Polynomial Chaos Expansion method as a tool to evaluate and quantify field homogeneities of a novel waveguide RF Wien Filter

    Full text link
    For the measurement of the electric dipole moment of protons and deuterons, a novel waveguide RF Wien filter has been designed and will soon be integrated at the COoler SYnchrotron at J\"ulich. The device operates at the harmonic frequencies of the spin motion. It is based on a waveguide structure that is capable of fulfilling the Wien filter condition (E⃗⊥B⃗\vec{E} \perp \vec{B}) \textit{by design}. The full-wave calculations demonstrated that the waveguide RF Wien filter is able to generate high-quality RF electric and magnetic fields. In reality, mechanical tolerances and misalignments decrease the simulated field quality, and it is therefore important to consider them in the simulations. In particular, for the electric dipole moment measurement, it is important to quantify the field errors systematically. Since Monte-Carlo simulations are computationally very expensive, we discuss here an efficient surrogate modeling scheme based on the Polynomial Chaos Expansion method to compute the field quality in the presence of tolerances and misalignments and subsequently to perform the sensitivity analysis at zero additional computational cost.Comment: 12 pages, 19 figure

    Electromagnetic Simulation and Design of a Novel Waveguide RF Wien Filter for Electric Dipole Moment Measurements of Protons and Deuterons

    Full text link
    The conventional Wien filter is a device with orthogonal static magnetic and electric fields, often used for velocity separation of charged particles. Here we describe the electromagnetic design calculations for a novel waveguide RF Wien filter that will be employed to solely manipulate the spins of protons or deuterons at frequencies of about 0.1 to 2 MHz at the COoler SYnchrotron COSY at J\"ulich. The device will be used in a future experiment that aims at measuring the proton and deuteron electric dipole moments, which are expected to be very small. Their determination, however, would have a huge impact on our understanding of the universe.Comment: 10 pages, 10 figures, 4 table

    Pioglitazone-Induced Acute Rhabdomyolysis

    Get PDF

    The effect of dietary fish oil on weight gain and insulin sensitivity is dependent on APOE genotype in humanized targeted replacement mice

    Get PDF
    We investigated the independent and interactive impact of the common APOE genotype and marine n-3 polyunsaturated fatty acids (PUFA) on the development of obesity and associated cardiometabolic dysfunction in a murine model. Human APOE3 and APOE4 targeted replacement mice were fed either a high-fat control diet (HFD) or a HFD supplemented with 3% n-3 PUFA from fish oil (HFD + FO) for 8 wk. We established the impact of intervention on food intake, bodyweight, and visceral adipose tissue (VAT) mass; plasma, lipids (cholesterol and triglycerides), liver enzymes, and adipokines; glucose and insulin during an intraperitoneal glucose tolerance test; and Glut4 and ApoE expression in VAT. HFD feeding induced more weight gain and higher plasma lipids in APOE3 compared to APOE4 mice (P < 0.05), along with a 2-fold higher insulin and impaired glucose tolerance. Supplementing APOE3, but not APOE4, animals with dietary n-3 PUFA decreased bodyweight gain, plasma lipids, and insulin (P < 0.05) and improved glucose tolerance, which was associated with increased VAT Glut4 mRNA levels (P < 0.05). Our findings demonstrate that an APOE3 genotype predisposes mice to develop obesity and its metabolic complications, which was attenuated by n-3 PUFA supplementation.—Slim, K. E., Vauzour, D., Tejera, N., Voshol, P. J., Cassidy, A., Minihane, A. M. The effect of dietary fish oil on weight gain and insulin sensitivity is dependent on APOE genotype in humanized targeted replacement mice

    Edge-Based Compartmental Modeling for Infectious Disease Spread Part I: An Overview

    Full text link
    The primary tool for predicting infectious disease spread and intervention effectiveness is the mass action Susceptible-Infected-Recovered model of Kermack and McKendrick. Its usefulness derives largely from its conceptual and mathematical simplicity; however, it incorrectly assumes all individuals have the same contact rate and contacts are fleeting. This paper is the first of three investigating edge-based compartmental modeling, a technique eliminating these assumptions. In this paper, we derive simple ordinary differential equation models capturing social heterogeneity (heterogeneous contact rates) while explicitly considering the impact of contact duration. We introduce a graphical interpretation allowing for easy derivation and communication of the model. This paper focuses on the technique and how to apply it in different contexts. The companion papers investigate choosing the appropriate level of complexity for a model and how to apply edge-based compartmental modeling to populations with various sub-structures
    • …
    corecore