33 research outputs found

    Réactivité chimique en phase gazeuse de molécules organiques d’intérêt atmosphérique et astrophysique

    Get PDF
    This thesis reports the experimental kinetic study of the gas phase reactions of atmospheric and astrophysical interests. The knowledge of the reactions rate constants is useful to understand the mechanisms of formation and destruction of molecules in the Earth’s atmosphere and in the interstellar medium. On the atmospheric side, we have studied the reactions of a series of hydroxyketones (4-hydroxy-2-butanone, 3-hydroxy-3-methyl-2-butanone and 4-hydroxy-4-methyl-2-pentanone), a large category of hydroxycarbonyls with OH radicals and chlorine atoms Cl in order to determine their atmospheric fate. We have measured the absolute rate constants of the reactions of hydroxyketones with OH radicals by using the cryogenic cell coupled to PLP-LIF technique (Pulsed Laser Photolysis - Laser Induced Fluorescence) at room temperature and as function of pressure. The relative rate constants of the reactions of the compounds investigated with Cl atoms were measured at room temperature and atmospheric pressure by using the atmospheric simulation chamber coupled to the analytical detection techniques: FTIR and GC-MS. In addition, a mechanistic study was also conducted in order to identify and quantify the products formed from these reactions. The whole results are discussed in order to assess the atmospheric implications of these hydroxyketones (lifetimes and environmental impact). On the astrophysical side, the kinetic of the reactions involving CN radical and a series of nitrogen-containing molecules (methylamine, dimethylamine, trimethylamine and acetonitrile) was studied over a wide range of temperature (23 K - 354 K) using CRESU technique (a French acronym standing for Cinétique de Réaction en Ecoulement Supersonique Uniforme) and the cryogenic cell coupled to the detection technique PLP-LIF. These experimental studies were accompanied by theoretical studies to better understand the reaction mechanisms. Possible astrophysical implications of the whole results have been discussed in this study.Cette thèse reporte l'étude expérimentale de la cinétique en phase gazeuse de plusieurs réactions d'intérêt atmosphérique et astrophysique. La connaissance des constantes de vitesse de ces réactions est utile à la compréhension des processus de synthèse et de destruction des molécules dans l'atmosphère terrestre et dans le milieu interstellaire. Sur le plan atmosphérique, nous avons étudié les réactions d'une série d'hydroxycétones, une sous-famille de COV carbonylés, (4-hydroxy-2-butanone, 3-hydroxy-3-méthyl-2-butanone and 4-hydroxy-4-méthyl-2-pentanone) avec le radical OH et l'atome de Chlore Cl afin de définir leur devenir atmosphérique. Nous avons déterminé les constantes de vitesse des réactions de ces hydroxycétones avec le radical OH en absolue à température ambiante et en fonction de la pression en utilisant la cellule cryogénique couplée à la technique PLP-LIF (Photolyse à Laser Pulsé – Fluorescence Induite par Laser). Les constantes de vitesse des réactions de ces hydroxycétones avec Cl ont été mesurées en relative à température ambiante et à pression atmosphérique en utilisant les chambres de simulation atmosphérique couplées aux techniques analytiques de détection : FTIR et GC-MS. En plus, une étude mécanistique a été menée également afin d'identifier et quantifier les produits issus de ces réactions. L'ensemble des résultats obtenus est discuté et nous a permis d'évaluer les implications atmosphériques de ces hydroxycétones (durée de vie et impact sur l'environnement). Le plan astrophysique, la cinétique des réactions impliquant le radical CN et une série de molécules azotées (méthyamine, diméthylamine, triméthylamine et acétonitrile) ont été étudiés sur une large gamme de température (23 K – 354 K) en utilisant la technique CRESU (Cinétique de Réaction en Écoulement Supersonique Uniforme) et la cellule cryogénique couplées à la technique de détection PLP-LIF. Ces études expérimentales ont été accompagnées par des études théoriques afin de mieux comprendre les mécanismes réactionnels. Les éventuelles implications astrophysiques de l'ensemble de ces résultats ont fait l'objet d'une discussion détaillée

    Pressure Dependent Low Temperature Kinetics for CN + CH3CN: Competition between Chemical Reaction and van der Waals Complex Formation

    No full text
    International audienceThe gas phase reaction between the CN radical and acetonitrile CH3CN was investigated experimentally, at low temperatures, with the CRESU apparatus and a slow flow reactor to explore the temperature dependence of its rate coefficient from 354 K down to 23 K. Whereas a standard Arrhenius behavior was found at T > 200 K, indicating the presence of an activation barrier, a dramatic increase in the rate coefficient by a factor of 130 was observed when the temperature was decreased from 168 to 123 K. The reaction was found to be pressure independent at 297 K unlike the experiments carried out at 52 and 132 K. The work was complemented by ab initio transition state theory based master equation calculations using reaction pathways investigated with highly accurate thermochemical protocols. The role of collisional stabilization of a CNâ‹ŻCH3CN van der Waals complex and of tunneling induced H atom abstractions were also considered. The experimental pressure dependence at 52 and 132 K is well reproduced by the theoretical calculations provided that an anharmonic state density is considered for the van der Waals complex CH3CNâ‹ŻCN and its Lennard-Jones radius is adjusted. Furthermore, these calculations indicate that the experimental observations correspond to the fall-off regime and that tunneling remains small in the low-pressure regime. Hence, the studied reaction is essentially an association process at very low temperature. Implications for the chemistry of interstellar clouds and Titan are discussed

    Chemical reactivity in gaz-phase of organic molécules of atmospherical and astrophysical interests

    No full text
    Cette thèse reporte l'étude expérimentale de la cinétique en phase gazeuse de plusieurs réactions d'intérêt atmosphérique et astrophysique. La connaissance des constantes de vitesse de ces réactions est utile à la compréhension des processus de synthèse et de destruction des molécules dans l'atmosphère terrestre et dans le milieu interstellaire. Sur le plan atmosphérique, nous avons étudié les réactions d'une série d'hydroxycétones, une sous-famille de COV carbonylés, (4-hydroxy-2-butanone, 3-hydroxy-3-méthyl-2-butanone and 4-hydroxy-4-méthyl-2-pentanone) avec le radical OH et l'atome de Chlore Cl afin de définir leur devenir atmosphérique. Nous avons déterminé les constantes de vitesse des réactions de ces hydroxycétones avec le radical OH en absolue à température ambiante et en fonction de la pression en utilisant la cellule cryogénique couplée à la technique PLP-LIF (Photolyse à Laser Pulsé – Fluorescence Induite par Laser). Les constantes de vitesse des réactions de ces hydroxycétones avec Cl ont été mesurées en relative à température ambiante et à pression atmosphérique en utilisant les chambres de simulation atmosphérique couplées aux techniques analytiques de détection : FTIR et GC-MS. En plus, une étude mécanistique a été menée également afin d'identifier et quantifier les produits issus de ces réactions. L'ensemble des résultats obtenus est discuté et nous a permis d'évaluer les implications atmosphériques de ces hydroxycétones (durée de vie et impact sur l'environnement). Le plan astrophysique, la cinétique des réactions impliquant le radical CN et une série de molécules azotées (méthyamine, diméthylamine, triméthylamine et acétonitrile) ont été étudiés sur une large gamme de température (23 K – 354 K) en utilisant la technique CRESU (Cinétique de Réaction en Écoulement Supersonique Uniforme) et la cellule cryogénique couplées à la technique de détection PLP-LIF. Ces études expérimentales ont été accompagnées par des études théoriques afin de mieux comprendre les mécanismes réactionnels. Les éventuelles implications astrophysiques de l'ensemble de ces résultats ont fait l'objet d'une discussion détaillée.This thesis reports the experimental kinetic study of the gas phase reactions of atmospheric and astrophysical interests. The knowledge of the reactions rate constants is useful to understand the mechanisms of formation and destruction of molecules in the Earth’s atmosphere and in the interstellar medium. On the atmospheric side, we have studied the reactions of a series of hydroxyketones (4-hydroxy-2-butanone, 3-hydroxy-3-methyl-2-butanone and 4-hydroxy-4-methyl-2-pentanone), a large category of hydroxycarbonyls with OH radicals and chlorine atoms Cl in order to determine their atmospheric fate. We have measured the absolute rate constants of the reactions of hydroxyketones with OH radicals by using the cryogenic cell coupled to PLP-LIF technique (Pulsed Laser Photolysis - Laser Induced Fluorescence) at room temperature and as function of pressure. The relative rate constants of the reactions of the compounds investigated with Cl atoms were measured at room temperature and atmospheric pressure by using the atmospheric simulation chamber coupled to the analytical detection techniques: FTIR and GC-MS. In addition, a mechanistic study was also conducted in order to identify and quantify the products formed from these reactions. The whole results are discussed in order to assess the atmospheric implications of these hydroxyketones (lifetimes and environmental impact). On the astrophysical side, the kinetic of the reactions involving CN radical and a series of nitrogen-containing molecules (methylamine, dimethylamine, trimethylamine and acetonitrile) was studied over a wide range of temperature (23 K - 354 K) using CRESU technique (a French acronym standing for Cinétique de Réaction en Ecoulement Supersonique Uniforme) and the cryogenic cell coupled to the detection technique PLP-LIF. These experimental studies were accompanied by theoretical studies to better understand the reaction mechanisms. Possible astrophysical implications of the whole results have been discussed in this study

    Atmospheric degradation of 4-hydroxy 4-methyl 2-pentanone with OH in the gas phase at 297 K

    No full text
    International audienceThe reaction of 4-hydroxy-4-methyl-2-pentanone (4H4M2P) with OH radicals was investigated in the gas-phase using an absolute rate method at room temperature and over the pressure range of 10 to 745 Torr in He and air as diluent gases. The rate coefficients were measured with the Pulsed Laser Photolysis method (PLP) to produce OH and the Laser Induced Fluorescence technique (LIF) to detect the fluorescence of OH radicals. An average value of (4.5±1.5)×10-12 cm3molecule-1s-1 was obtained. This study is the first absolute determination of the rate coefficient of 4H4M2P with OH at room temperature as a function of pressure and the nature of diluent gases. No pressure dependence of the rate coefficient was observed. The obtained results are compared with those of other hydroxyketones in terms of the structure reactivity relationship. The calculated tropospheric lifetime obtained in this work suggests that once emitted into the atmosphere, 4H4M2P may contribute to the photochemical pollution in a local or regional scale
    corecore