830 research outputs found
Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging
Alzheimer's disease (AD) is associated with extensive alterations in grey matter microstructure, but our ability to quantify this in vivo is limited. Neurite orientation dispersion and density imaging (NODDI) is a multi-shell diffusion MRI technique that estimates neuritic microstructure in the form of orientation dispersion and neurite density indices (ODI/NDI). Mean values for cortical thickness, ODI, and NDI were extracted from predefined regions of interest in the cortical grey matter of 38 patients with young onset AD and 22 healthy controls. Five cortical regions associated with early atrophy in AD (entorhinal cortex, inferior temporal gyrus, middle temporal gyrus, fusiform gyrus, and precuneus) and one region relatively spared from atrophy in AD (precentral gyrus) were investigated. ODI, NDI, and cortical thickness values were compared between controls and patients for each region, and their associations with MMSE score were assessed. NDI values of all regions were significantly lower in patients. Cortical thickness measurements were significantly lower in patients in regions associated with early atrophy in AD, but not in the precentral gyrus. Decreased ODI was evident in patients in the inferior and middle temporal gyri, fusiform gyrus, and precuneus. The majority of AD-related decreases in cortical ODI and NDI persisted following adjustment for cortical thickness, as well as each other. There was evidence in the patient group that cortical NDI was associated with MMSE performance. These data suggest distinct differences in cortical NDI and ODI occur in AD and these metrics provide pathologically relevant information beyond that of cortical thinning
Eyetracking Metrics in Young Onset Alzheimer’s Disease: A Window into Cognitive Visual Functions
Young onset Alzheimer’s disease (YOAD) is defined as symptom onset before the age of
65 years and is particularly associated with phenotypic heterogeneity. Atypical presentations,
such as the clinic-radiological visual syndrome posterior cortical atrophy (PCA),
often lead to delays in accurate diagnosis. Eyetracking has been used to demonstrate
basic oculomotor impairments in individuals with dementia. In the present study, we
aim to explore the relationship between eyetracking metrics and standard tests of visual
cognition in individuals with YOAD. Fifty-seven participants were included: 36 individuals
with YOAD (n = 26 typical AD; n = 10 PCA) and 21 age-matched healthy controls.
Participants completed three eyetracking experiments: fixation, pro-saccade, and
smooth pursuit tasks. Summary metrics were used as outcome measures and their
predictive value explored looking at correlations with visuoperceptual and visuospatial
metrics. Significant correlations between eyetracking metrics and standard visual cognitive
estimates are reported. A machine-learning approach using a classification method
based on the smooth pursuit raw eyetracking data discriminates with approximately
95% accuracy patients and controls in cross-validation tests. Results suggest that the
eyetracking paradigms of a relatively simple and specific nature provide measures not
only reflecting basic oculomotor characteristics but also predicting higher order visuospatial
and visuoperceptual impairments. Eyetracking measures can represent extremely
useful markers during the diagnostic phase and may be exploited as potential outcome
measures for clinical trials
Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion
The ability to transduce non-classical states of light from one wavelength to
another is a requirement for integrating disparate quantum systems that take
advantage of telecommunications-band photons for optical fiber transmission of
quantum information and near-visible, stationary systems for manipulation and
storage. In addition, transducing a single-photon source at 1.3 {\mu}m to
visible wavelengths for detection would be integral to linear optical quantum
computation due to the challenges of detection in the near-infrared. Recently,
transduction at single-photon power levels has been accomplished through
frequency upconversion, but it has yet to be demonstrated for a true
single-photon source. Here, we transduce the triggered single-photon emission
of a semiconductor quantum dot at 1.3 {\mu}m to 710 nm with a total detection
(internal conversion) efficiency of 21% (75%). We demonstrate that the 710 nm
signal maintains the quantum character of the 1.3 {\mu}m signal, yielding a
photon anti-bunched second-order intensity correlation, g^(2)(t), that shows
the optical field is composed of single photons with g^(2)(0) = 0.165 < 0.5.Comment: 7 pages, 4 figure
ApoE influences regional white-matter axonal density loss in Alzheimer's disease
Mechanisms underlying phenotypic heterogeneity in young onset Alzheimer disease (YOAD) are poorly understood. We used diffusion tensor imaging and neurite orientation dispersion and density imaging (NODDI) with tract-based spatial statistics to investigate apolipoprotein (APOE) ε4 modulation of white-matter damage in 37 patients with YOAD (22, 59% APOE ε4 positive) and 23 age-matched controls. Correlation between neurite density index (NDI) and neuropsychological performance was assessed in 4 white-matter regions of interest. White-matter disruption was more widespread in ε4+ individuals but more focal (posterior predominant) in the absence of an ε4 allele. NODDI metrics indicate fractional anisotropy changes are underpinned by combinations of axonal loss and morphological change. Regional NDI in parieto-occipital white matter correlated with visual object and spatial perception battery performance (right and left, both p = 0.02), and performance (nonverbal) intelligence (WASI matrices, right, p = 0.04). NODDI provides tissue-specific microstructural metrics of white-matter tract damage in YOAD, including NDI which correlates with focal cognitive deficits, and APOEε4 status is associated with different patterns of white-matter neurodegeneration
A targeted proteomic multiplex CSF assay identifies increased malate dehydrogenase and other neurodegenerative biomarkers in individuals with Alzheimer's disease pathology
Alzheimer's disease (AD) is the most common cause of dementia. Biomarkers are required to identify individuals in the preclinical phase, explain phenotypic diversity, measure progression and estimate prognosis. The development of assays to validate candidate biomarkers is costly and time-consuming. Targeted proteomics is an attractive means of quantifying novel proteins in cerebrospinal and other fluids, and has potential to help overcome this bottleneck in biomarker development. We used a previously validated multiplexed 10-min, targeted proteomic assay to assess 54 candidate cerebrospinal fluid (CSF) biomarkers in two independent cohorts comprising individuals with neurodegenerative dementias and healthy controls. Individuals were classified as 'AD' or 'non-AD' on the basis of their CSF T-tau and amyloid Aβ1-42 profile measured using enzyme-linked immunosorbent assay; biomarkers of interest were compared using univariate and multivariate analyses. In all, 35/31 individuals in Cohort 1 and 46/36 in Cohort 2 fulfilled criteria for AD/non-AD profile CSF, respectively. After adjustment for multiple comparisons, five proteins were elevated significantly in AD CSF compared with non-AD CSF in both cohorts: malate dehydrogenase; total APOE; chitinase-3-like protein 1 (YKL-40); osteopontin and cystatin C. In an independent multivariate orthogonal projection to latent structures discriminant analysis (OPLS-DA), these proteins were also identified as major contributors to the separation between AD and non-AD in both cohorts. Independent of CSF Aβ1-42 and tau, a combination of these biomarkers differentiated AD and non-AD with an area under curve (AUC)=0.88. This targeted proteomic multiple reaction monitoring (MRM)-based assay can simultaneously and rapidly measure multiple candidate CSF biomarkers. Applying this technique to AD we demonstrate differences in proteins involved in glucose metabolism and neuroinflammation that collectively have potential clinical diagnostic utility
Two stages of parafoveal processing during reading: Evidence from a display change detection task
We used a display change detection paradigm (Slattery, Angele, & Rayner Human Perception and Performance, 37, 1924–1938 2011) to investigate whether display change detection uses orthographic regularity and whether detection is affected by the processing difficulty of the word preceding the boundary that triggers the display change. Subjects were significantly more sensitive to display changes when the change was from a nonwordlike preview than when the change was from a wordlike preview, but the preview benefit effect on the target word was not affected by whether the preview was wordlike or nonwordlike. Additionally, we did not find any influence of preboundary word frequency on display change detection performance. Our results suggest that display change detection and lexical processing do not use the same cognitive mechanisms. We propose that parafoveal processing takes place in two stages: an early, orthography-based, preattentional stage, and a late, attention-dependent lexical access stage
Navigational cue effects in Alzheimer's disease and posterior cortical atrophy.
OBJECTIVE: Deficits in spatial navigation are characteristic and disabling features of typical Alzheimer's disease (tAD) and posterior cortical atrophy (PCA). Visual cues have been proposed to mitigate such deficits; however, there is currently little empirical evidence for their use. METHODS: The effect of visual cues on visually guided navigation was assessed within a simplified real-world setting in individuals with tAD (n = 10), PCA (n = 8), and healthy controls (n = 12). In a repeated-measures design comprising 36 trials, participants walked to a visible target destination (an open door within a built environment), with or without the presence of an obstacle. Contrast and motion-based cues were evaluated; both aimed to facilitate performance by applying perceptual changes to target destinations without carrying explicit information. The primary outcome was completion time; secondary outcomes were measures of fixation position and walking path directness during consecutive task phases, determined using mobile eyetracking and motion capture methods. RESULTS: Results illustrate marked deficits in patients' navigational ability, with patient groups taking an estimated two to three times longer to reach target destinations than controls and exhibiting tortuous walking paths. There were no significant differences between tAD and PCA task performance. Overall, patients took less time to reach target destinations under cue conditions (contrast-cue: 11.8%; 95% CI: [2.5, 20.3]) and were more likely initially to fixate on targets. INTERPRETATION: The study evaluated navigation to destinations within a real-world environment. There is evidence that introducing perceptual changes to the environment may improve patients' navigational ability
Recombination dynamics of a human Y-chromosomal palindrome:rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
- …
