235 research outputs found

    Cisplatin ototoxicity blocks sensory regeneration in the avian inner ear

    Get PDF
    Cisplatin is a chemotherapeutic agent that is widely-used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy, and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was also capable of regeneration after cisplatin ototoxicity. Using cell and organ cultures of the chick cochlea and utricle, we found that cisplatin treatment caused apoptosis of both auditory and vestibular hair cells. Hair cell death in the cochlea occurred in a unique pattern, progressing from the low frequency (distal) region toward the high frequency (proximal) region. We also found that cisplatin caused a dose-dependent reduction in the proliferation of cultured supporting cells as well as increased apoptosis in those cells. As a result, we observed no recovery of hair cells after ototoxic injury caused by cisplatin. Finally, we explored the potential for nonmitotic hair cell recovery via activation of Notch pathway signaling. Treatment with the γ-secretase inhibitor DAPT failed to promote the direct transdifferentiation of supporting cells into hair cells in cisplatin-treated utricles. Taken together, our data show that cisplatin treatment causes maintained changes to inner ear supporting cells and severely impairs the ability of the avian ear to regenerate either via proliferation or by direct transdifferentiation

    Reactive-Atom Scattering from Liquid Crystals at the Liquid-Vacuum Interface : [C12mim][BF4] and 4-Cyano-4′-Octylbiphenyl (8CB)

    Get PDF
    Two complementary approaches were used to study the liquid-vacuum interface of the liquid-crystalline ionic liquid 1-dodecyl-3-methylimidazolium tetrafluoroborate ([C12mim][BF4]) in the smectic A (SmA) and isotropic phases. O atoms with two distinct incident translational energies were scattered from the surface of [C12mim][BF4]. Angle-dependent time-of-flight distributions and OH yields, respectively, were recorded from high- and low-energy O atoms. There were no significant changes in the measurements using either approach, nor the properties derived from them, accompanying the transition from the SmA to the isotropic phase. This indicates that the surface structure of [C12mim][BF4] remains essentially unchanged across the phase boundary, implying that the bulk order and surface structure are not strongly correlated for this material. This effect is ascribed to the strong propensity for the outer surfaces of ionic liquids to be dominated by alkyl chains, over an underlying layer rich in anions and cation head groups, whether or not the bulk material is a liquid crystal. In a comparative study, the OH yield from the surface of the liquid crystal, 8CB, was found to be affected by the bulk order, showing a surprising step increase at the SmA-nematic transition temperature, whose origin is the subject of speculation

    Determining the Composition of the Vacuum-Liquid Interface in Ionic-Liquid Mixtures

    Get PDF
    The vacuum-liquid interfaces of a number of ionic-liquid mixtures have been investigated using a combination of reactive-atom scattering with laser-induced fluorescence detection (RAS-LIF), selected surface tension measurements, and molecular dynamics (MD) simulations. The mixtures are based on the widespread 1-alkyl-3-methylimidazolium ([Cnmim]+) cation, including mixed cations which differ in chain length or chemical functionality with a common anion; and different anions for a common cation. RAS-LIF results imply that the surface compositions exhibit a general form of non-stoichiometric behaviour that mimics the well-known Henry’s and Raoult’s laws at low and high mole fraction, respectively. The Extended Langmuir model provides a moderately good single-parameter fit, but higher-order terms are required for an accurate description. The quantitative relationship between RAS-LIF and surface tension, which probes the surface composition only indirectly, is explored for mixtures of [C2mim]+ and [C12mim]+ with a common bis(trifluoromethylsulfonyl)imide ([NTf2]-) anion. Extended Langmuir model fits to surface tension data are broadly consistent with those to RAS-LIF; however, several other common approaches to extracting surface compositions from measured surface tensions result in much larger discrepancies. MD simulations suggest that RAS-LIF faithfully reports on the alkyl-chain exposure at the surface, which is only subtly modified by composition-dependent structural reorganisation

    Structure and Measurement of Depression in Youth: Applying Item Response Theory to Clinical Data

    Get PDF
    Goals of the paper were to use item response theory (IRT) to assess the relation of depressive symptoms to the underlying dimension of depression and to demonstrate how IRT-based measurement strategies can yield more reliable data about depression severity than conventional symptom counts. Participants were 3403 clinic and nonclinic children and adolescents from 12 contributing samples, all of whom received the Kiddie Schedule of Affective Disorders and Schizophrenia for school-aged children. Results revealed that some symptoms reflected higher levels of depression and were more discriminating than others. Results further demonstrated that utilization of IRT-based information about symptom severity and discriminability in the measurement of depression severity can reduce measurement error and increase measurement fidelity

    Spatial distributions of white matter hyperintensities on brain MRI: A pooled analysis of individual participant data from 11 memory clinic cohorts

    Get PDF
    Introduction: The spatial distribution of white matter hyperintensities (WMH) on MRI is often considered in the diagnostic evaluation of patients with cognitive problems. In some patients, clinicians may classify WMH patterns as unusual, but this is largely based on expert opinion, because detailed quantitative information about WMH distribution frequencies in a memory clinic setting is lacking. Here we report voxel wise 3D WMH distribution frequencies in a large multicenter dataset and also aimed to identify individuals with unusual WMH patterns. Methods: Individual participant data (N = 3525, including 777 participants with subjective cognitive decline, 1389 participants with mild cognitive impairment and 1359 patients with dementia) from eleven memory clinic cohorts, recruited through the Meta VCI Map Consortium, were used. WMH segmentations were provided by participating centers or performed in Utrecht and registered to the Montreal Neurological Institute (MNI)-152 brain template for spatial normalization. To determine WMH distribution frequencies, we calculated WMH probability maps at voxel level. To identify individuals with unusual WMH patterns, region-of-interest (ROI) based WMH probability maps, rule-based scores, and a machine learning method (Local Outlier Factor (LOF)), were implemented. Results: WMH occurred in 82% of voxels from the white matter template with large variation between subjects. Only a small proportion of the white matter (1.7%), mainly in the periventricular areas, was affected by WMH in at least 20% of participants. A large portion of the total white matter was affected infrequently. Nevertheless, 93.8% of individual participants had lesions in voxels that were affected in less than 2% of the population, mainly located in subcortical areas. Only the machine learning method effectively identified individuals with unusual patterns, in particular subjects with asymmetric WMH distribution or with WMH at relatively rarely affected locations despite common locations not being affected. Discussion: Aggregating data from several memory clinic cohorts, we provide a detailed 3D map of WMH lesion distribution frequencies, that informs on common as well as rare localizations. The use of data-driven analysis with LOF can be used to identify unusual patterns, which might serve as an alert that rare causes of WMH should be considered

    Nano-Segregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures

    Get PDF
    Ionic-liquid (IL) mixtures hold great promise, as they allow liquids with a wide range of properties to be formed by mixing two common components, rather than by synthesizing a large array of pure ILs with different chemical structures. In addition, these mixtures can exhibit a range of properties and structural organization that depend on their composition, which opens up new possibilities for the composition-dependent control of IL properties for particular applications. However, the fundamental properties, structure and dynamics of IL mixtures are currently poorly understood, which limits their more widespread application. This paper presents the first comprehensive investigation into the bulk and surface properties of IL mixtures formed from two commonly encountered ILs: 1-ethyl-3-methylimidazolium and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N] and [C12mim][Tf2N]). Physical property measurements (viscosity, conductivity and density) find that these IL mixtures are not well described by simple mixing laws, suggesting that their structure and dynamics are strongly composition-dependent. Small-angle X-ray and neutron scattering (SAXS and SANS) measurements, alongside molecular dynamics (MD) simulations, show that at low mole fractions of [C12mim][Tf2N], the bulk of the IL is composed of small aggregates of [C12mim]+ ions in a [C2mim][Tf2N] matrix, which is driven by nano-segregation of the long alkyl chains and the polar parts of the IL. As the proportion of [C12mim][Tf2N] in the mixtures increases, the size and number of aggregates increases until the C12 alkyl chains percolate through the system and a bicontinuous network of polar and non-polar domains is formed. Reactive atom scattering-laser-induced fluorescence (RAS-LIF) experiments, also supported by MD simulations, have been used to probe the surface structure of these mixtures. It is found that the vacuum-IL interface is enriched significantly in C12 alkyl chains, even in mixtures low in the long-chain component. These data show, contrary to previous suggestions, that the [C12mim]+ ion is surface active in this binary IL mixture. However, the surface does not become saturated in C12 chains as its proportion in the mixtures increases and remains unsaturated in pure [C12mim][Tf2N]

    Nanosegregation and Structuring in the Bulk and at the Surface of Ionic-Liquid Mixtures

    Get PDF
    Ionic-liquid (IL) mixtures hold great promise, as they allow liquids with a wide range of properties to be formed by mixing two common components, rather than by synthesizing a large array of pure ILs with different chemical structures. In addition, these mixtures can exhibit a range of properties and structural organization that depend on their composition, which opens up new possibilities for the composition-dependent control of IL properties for particular applications. However, the fundamental properties, structure and dynamics of IL mixtures are currently poorly understood, which limits their more widespread application. This paper presents the first comprehensive investigation into the bulk and surface properties of IL mixtures formed from two commonly encountered ILs: 1-ethyl-3-methylimidazolium and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N] and [C12mim][Tf2N]). Physical property measurements (viscosity, conductivity and density) find that these IL mixtures are not well described by simple mixing laws, suggesting that their structure and dynamics are strongly composition-dependent. Small-angle X-ray and neutron scattering (SAXS and SANS) measurements, alongside molecular dynamics (MD) simulations, show that at low mole fractions of [C12mim][Tf2N], the bulk of the IL is composed of small aggregates of [C12mim]+ ions in a [C2mim][Tf2N] matrix, which is driven by nano-segregation of the long alkyl chains and the polar parts of the IL. As the proportion of [C12mim][Tf2N] in the mixtures increases, the size and number of aggregates increases until the C12 alkyl chains percolate through the system and a bicontinuous network of polar and non-polar domains is formed. Reactive atom scattering-laser-induced fluorescence (RAS-LIF) experiments, also supported by MD simulations, have been used to probe the surface structure of these mixtures. It is found that the vacuum-IL interface is enriched significantly in C12 alkyl chains, even in mixtures low in the long-chain component. These data show, contrary to previous suggestions, that the [C12mim]+ ion is surface active in this binary IL mixture. However, the surface does not become saturated in C12 chains as its proportion in the mixtures increases and remains unsaturated in pure [C12mim][Tf2N]

    Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities:A multicenter study in 3132 memory clinic patients

    Get PDF
    INTRODUCTION: White matter hyperintensities (WMH) are associated with key dementia etiologies, in particular arteriolosclerosis and amyloid pathology. We aimed to identify WMH locations associated with vascular risk or cerebral amyloid-β1-42 (Aβ42)-positive status. METHODS: Individual patient data (n = 3,132; mean age 71.5 ± 9 years; 49.3% female) from 11 memory clinic cohorts were harmonized. WMH volumes in 28 regions were related to a vascular risk compound score (VRCS) and Aß42 status (based on cerebrospinal fluid or amyloid positron emission tomography), correcting for age, sex, study site, and total WMH volume.RESULTS: VRCS was associated with WMH in anterior/superior corona radiata (B = 0.034/0.038, p &lt; 0.001), external capsule (B = 0.052, p &lt; 0.001), and middle cerebellar peduncle (B = 0.067, p &lt; 0.001), and Aß42-positive status with WMH in posterior thalamic radiation (B = 0.097, p &lt; 0.001) and splenium (B = 0.103, p &lt; 0.001). DISCUSSION: Vascular risk factors and Aß42 pathology have distinct signature WMH patterns. This regional vulnerability may incite future studies into how arteriolosclerosis and Aß42 pathology affect the brain's white matter. Highlights: Key dementia etiologies may be associated with specific patterns of white matter hyperintensities (WMH). We related WMH locations to vascular risk and cerebral Aβ42 status in 11 memory clinic cohorts. Aβ42 positive status was associated with posterior WMH in splenium and posterior thalamic radiation. Vascular risk was associated with anterior and infratentorial WMH. Amyloid pathology and vascular risk have distinct signature WMH patterns.</p

    Age, gender, and cancer but not neurodegenerative and cardiovascular diseases strongly modulate systemic effect of the Apolipoprotein E4 allele on lifespan

    Get PDF
    Enduring interest in the Apolipoprotein E (ApoE) polymorphism is ensured by its evolutionary-driven uniqueness in humans and its prominent role in geriatrics and gerontology. We use large samples of longitudinally followed populations from the Framingham Heart Study (FHS) original and offspring cohorts and the Long Life Family Study (LLFS) to investigate gender-specific effects of the ApoE4 allele on human survival in a wide range of ages from midlife to extreme old ages, and the sensitivity of these effects to cardiovascular disease (CVD), cancer, and neurodegenerative disorders (ND). The analyses show that women's lifespan is more sensitive to the e4 allele than men's in all these populations. A highly significant adverse effect of the e4 allele is limited to women with moderate lifespan of about 70 to 95 years in two FHS cohorts and the LLFS with relative risk of death RR = 1.48 (p = 3.6×10(−6)) in the FHS cohorts. Major human diseases including CVD, ND, and cancer, whose risks can be sensitive to the e4 allele, do not mediate the association of this allele with lifespan in large FHS samples. Non-skin cancer non-additively increases mortality of the FHS women with moderate lifespans increasing the risks of death of the e4 carriers with cancer two-fold compared to the non-e4 carriers, i.e., RR = 2.07 (p = 5.0×10(−7)). The results suggest a pivotal role of non-sex-specific cancer as a nonlinear modulator of survival in this sample that increases the risk of death of the ApoE4 carriers by 150% (p = 5.3×10(−8)) compared to the non-carriers. This risk explains the 4.2 year shorter life expectancy of the e4 carriers compared to the non-carriers in this sample. The analyses suggest the existence of age- and gender-sensitive systemic mechanisms linking the e4 allele to lifespan which can non-additively interfere with cancer-related mechanisms

    A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk

    Full text link
    Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Geneenvironment interactions (G x E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G x E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G x E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G x E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant GxBMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer
    • …
    corecore