47 research outputs found
A global assessment of deep-sea basalt sites for carbon sequestration
In recent years, the debate over the most effective means to stabilize greenhouse gas concentrations in the atmosphere has endorsed multiple approaches and a variety of technologies. Assuring secure storage of anthropogenic carbon dioxide is one of our most pressing global scientific challenges that may contribute to achieving a stable solution over the next several decades. Geological sequestration by injection into deep-sea basalt formations provides unique and significant advantages over other potential storage options, including: (a) vast reservoir capacities with high porosity and permeability, sufficient to accommodate centuries-long U.S. production of fossil fuel CO~2~ at locations within a few hundreds of kilometers of populated areas; (b) chemical reactivity of CO~2~ with basalt and in situ fluids to produce stable, non-toxic carbonates; and (c) significant risk reduction for post-injection leakage by geological, gravitational, and mineral trapping mechanisms. We compare independent trapping mechanisms available in deep-sea basalts to those in saline aquifers, which have also been proposed as potential storage environments for anthropogenic carbon dioxide. We suggest that deep-sea basalts offer significant advantages over saline aquifers, in terms of reduced risk of post-injection leakage and storage capacity. Using a global site assessment strategy to highlight the most secure oceanic basalt sites that provide all trapping mechanisms, we initially identify potential target regions that occur in deep-sea basalt and calculate the potential injection volume for each. The largest volumes and most secure basalt sites occur in regions adjacent to intermediate- to fast-spreading seismic ridges as well as deep aseismic ridges. We then use site-specific criteria, such as abundance of ODP and IODP drill sites with basement penetration, permeability and/or porosity data, to refine volume calculations and to prioritize these target regions as promising locations to securely accommodate carbon dioxide injection. Pilot injection studies in deep-sea basalts are necessary to establish the viability of these reservoirs for future CO~2~ sequestration. We suggest that basaltic crust at deep ocean sites offers vast capacity and potential for permanent sequestration of carbon dioxide to mitigate atmospheric build-up of this greenhouse gas
Recommended from our members
Co-Location of Air Capture, Subseafloor CO2 Sequestration, and Energy Production on the Kerguelen Plateau
Reducing atmospheric CO2 using a combination of air capture and offshore geological storage can address technical and policy concerns with climate mitigation. Because CO2 mixes rapidly in the atmosphere, air capture could operate anywhere and in principle reduce CO2 to preindustrial levels. We investigate the Kerguelen plateau in the Indian Ocean, which offers steady wind resources, vast subseafloor storage capacities, and minimal risk of economic damages or human inconvenience and harm. The efficiency of humidity swing driven air capture under humid and windy conditions is tested in the laboratory. Powered by wind, we estimate 75 Mt CO2/yr could be collected using air capture and sequestered below seafloor or partially used for synfuel. Our analysis suggests that Kerguelen offers a remote and environmentally secure location for CO2 sequestration using renewable energy. Regional reservoirs could hold over 1500 Gt CO2, sequestering a large fraction of 21st century emissions
Recommended from our members
Integrative Acoustic Mapping Reveals Hudson River Sediment Processes and Habitats
Rivers and estuaries around the world are the focus of human settlements and activities. Needs for clean water, ecosystem preservation, commercial navigation, industrial development, and recreational access compete for the use of estuaries, and management of these resources requires a detailed understanding of estuarine morphology and sediment dynamics. This article presents an overview of the first estuary-wide study of a heavily used estuary, the Hudson River, based on high-resolution acoustic mapping of the river bottom. The integration of three high-resolution acoustic methods with extensive sampling reveals an unexpected complexity of bottom features and allows detailed classification of the benthic environment in terms of riverbed morphology, sediment type, and sedimentary processes
Dataset of characteristic remanent magnetization and magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform)
This data article describes data of magnetic stratigraphy and anisotropy of isothermal remanent magnetization (AIRM) from "Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system" [1]. Acquisition of isothermal magnetization on pilot samples and anisotropy of isothermal remanent magnetization are reported as raw data; magnetostratigraphic data are reported as characteristic magnetization (ChRM).info:eu-repo/semantics/publishedVersio
Cyclic anoxia and organic rich carbonate sediments within a drowned carbonate platform linked to Antarctic ice volume changes: Late Oligocene-early Miocene Maldives
This paper reports on the newly discovered occurrence of thick sequences (∼100 m) of Late Oligocene and Early Miocene (∼24.9 to ∼20 Ma) interbedded organic-rich sediments (sapropels) and pelagic (organic poor) carbonates at Sites U1466 and U1468 drilled in the Maldives archipelago during the International Ocean Discovery Program (IODP) Expedition 359. This occurrence is unusual in that this sequence is located > 1000 m above the surrounding ocean floor within an inter-atoll basin and not linked to any known global oceanic events. Total organic content reaches as high as 35% in the darker layers, while the interbedded carbonates have concentrations of less than 0.1%. Trace elements characteristic of anoxic waters, such as Mo, V, Cr, U, and Pb, correlate positively with concentrations of organic carbon. Nitrogen isotopic data show no evidence that the intervals of high total organic carbon are related to enhanced productivity driven by upwelling. Instead, high organic carbon is associated with intervals of anoxia. We propose that sea-level fluctuations linked to changes in Antarctic ice volume restricted exchange with the open ocean causing bottom waters of the inter-atoll basin to become anoxic periodically. The architecture of the platform at the end of the Oligocene, combined with the global sea-level highstand, set the stage for orbitally-driven sea-level changes producing cyclic deposition of sapropels. The proposed mechanism may serve as an analogue for other occurrences of organic carbon-rich sediments within carbonate platform settings.</p
Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system
We report a study of the magnetic stratigraphy and the anisotropy of isothermal remanent magnetization of Pliocene sediments from International Ocean Discovery Program (IODP) Site U1467 drilled in the Maldives platform (Indian Ocean) during Exp. 359. Magnetic stratigraphy gives a precise record of geomagnetic reversals of the early Pliocene from approximately 5.3 Ma to 3.1 Ma providing a detailed age model in an interval where the biostratigraphic record is scarce. We use the anisotropy of isothermal remanent magnetization (AIRM) to investigate the statistical orientation of fine magnetic particles and provide data on the strength and direction of bottom currents during the early Pliocene. The strength of bottom currents recorded by the AIRM, shows a prominent increase at the top of Chron C3n.1n (about 4.2 Ma), and the current direction (NE - SW) is consistent with that of modern instrumental measurements. Since bottom currents in the Maldives are driven by the monsoon, we speculate that the 4.2 Ma increase of bottom currents could mark the onset of the present-day setting, probably related to the coeval uplift phase of the Himalayan plateau
Carbonate delta drift: a new sediment drift type
Based on high-resolution reflection seismic and core data from IODP Expedition 359 we present a new channel-related drift type attached to a carbonate platform slope, which we termed delta drift. Like a river delta, it is comprised of several stacked lobes and connected to a point source. The delta drifts were deposited at the exit of two gateways that connect the Inner Sea of the Maldives carbonate platform with the open ocean. The channels served as conduits focusing and accelerating the water flow; Entrained material was deposited at their mouth where the flows relaxed. The lobe-shaped calcareous sediment drifts must have formed under persistent water through flow. Sediment supply was relatively high and continuous, resulting in an average sedimentation rate of 17 cm ka−1. The two delta drifts occupy 342 and 384 km2, respectively; with a depositional relief of approximately 500 m. They have a sigmoidal clinoform reflection pattern with a particular convex upward bending of the foresets. In the Maldives the drift onset marks the transition from a sea-level controlled to a progressively current dominated depositional regime. This major event occurred in the Serravallian about 13 Ma ago, leading to the partial drowning of the carbonate platform and the creation of shallow seaways. The initial bank-enclosed topography resembles an “empty bucket” geometry which is rapidly filled by the drift sediments that aggrade and prograde into the basin. Thereby the depositional environment of the delta drifts changes from deep water (>500) to shallow-water conditions at their topsets, indicated by the overall coarsening upward trend in grain size and the presence of shallow water large benthic foraminifers at their top
Correction to:A two million year record of low-latitude aridity linked to continental weathering from the Maldives (Progress in Earth and Planetary Science, (2018), 5, 1, (86), 10.1186/s40645-018-0238-x)
In the original version of this article (Kunkelova et al. 2018), published on 18 December 2018, there was 1 error in the author name of Dr. Yu
The abrupt onset of the modern South Asian Monsoon winds
The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system