14 research outputs found

    Tools and techniques for solvent selection: green solvent selection guides

    Get PDF
    Driven by legislation and evolving attitudes towards environmental issues, establishing green solvents for extractions, separations, formulations and reaction chemistry has become an increasingly important area of research. Several general purpose solvent selection guides have now been published with the aim to reduce use of the most hazardous solvents. This review serves the purpose of explaining the role of these guides, highlighting their similarities and differences. How they can be used most effectively to enhance the greenness of chemical processes, particularly in laboratory organic synthesis and the pharmaceutical industry, is addressed in detail

    Rapid Ring-Opening Metathesis Polymerization of Monomers Obtained from Biomass-Derived Furfuryl Amines and Maleic Anhydride

    Get PDF
    Well-controlled and extremely rapid ring-opening metathesis polymerization of unusual oxanorbornene lactam esters by Grubbs third-generation catalyst is used to prepare a range of bio-based homo- and copolymers. Bio-derived oxanorbornene lactam monomers were prepared at room temperature from maleic anhydride and secondary furfuryl amines by using a 100 % atom economical, tandem Diels–Alder lactamization reaction, followed by esterification. Several of the resulting homo- and copolymers show good control over polymer molecular weight and have narrow molecular weight distributions

    Pulmonary vein anatomy variants as a biomarker of atrial fibrillation – CT angiography evaluation

    No full text
    Abstract Background It has been suggested that changes in pulmonary veins (PV) and left atrium (LA) anatomy may have an influence on initiating atrial fibrillation (AF) and the effectiveness of pulmonary vein isolation (PVI) in patients (pts) with atrial fibrillation. The aim of the study was to assess anatomy abnormalities of the PV and LA in the patients with the history of AF and compare it with the control group(CG). Methods The multi-slice tomography (MSCT) scans were performed in 224 AF pts. before PVI (129 males, mean age 59 ± 9 yrs). The CG consisted of 40 pts. without AF (26 males, age 45 ± 9 yrs). LA and PV anatomy were evaluated. Diameters of PV ostia were measured in two directions: anterior-posterior (AP) and superior-inferior (SI) automatically using Vitrea 4.0. Results Pulmonary veins anatomy variants were observed more frequently in the atrial fibrillation group - 83 pts. (37%) vs 6 pts. (15%) in CG; 9% (21 pts) left common ostia (CO), 2% (5 pts) right CO, 19% (42 pts) additional right PV (APV), (1.8%) 4 pts. APV left, 8% right early branching (EB) and 3.5% left EB. The LA diameter differed significantly in AF vs CG group (41.2 ± 6 mm vs 35 ± 4.2 mm, p < 0.0001) respectively. Conclusions The anomalies of pulmonary vein anatomy occurred more often in pts. with AF. They can be defined as an image biomarkers of atrial fibrillation. Right additional (middle) pulmonary vein was the most important anomaly detected in AF patients as well as enlargered diameters of the LA and PV ostia

    Nitration Under Continuous Flow Conditions: Convenient Synthesis of 2‑Isopropoxy-5-nitrobenzaldehyde, an Important Building Block in the Preparation of Nitro-Substituted Hoveyda–Grubbs Metathesis Catalyst

    No full text
    Herein, we describe the use of continuous flow chemistry for selective, efficient and reproducible nitration of 2-isopropoxybenzaldehyde to produce the desired 2-isopropoxy-5-nitrobenzaldehyde, an important building block in the preparation of a ligand of nitro-substituted Hoveyda–Grubbs metathesis catalyst. Nitration was done with red fuming HNO<sub>3</sub>, and this challenging and hazardous process was performed using a flow-through silicon-glass microreactor equipped with a set of temperature sensors, and with a productivity of 13 g/h, providing us with a reproducible chemical process amenable for production of sufficient quantities of 2-isopropoxy-5-nitrobenzaldehyde for ongoing large-scale synthesis of nitro-substituted Hoveyda–Grubbs metathesis catalyst

    Kinetically E-selective macrocyclic ring-closing metathesis

    No full text
    Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: The potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization- A particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib- A potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis-was prepared by RCM carried out at a substrate concentration 20 times greater than when a ruthenium carbene was used.National Institutes of Health (U.S.) (Grant GM-59426)National Science Foundation (U.S.) (Grant CHE-1362763
    corecore