3 research outputs found
Intraoperative assessment of fluid responsiveness in normotensive dogs under isoflurane anaesthesia
The aim of this study was to evaluate the incidence of fluid responsiveness (FR) to a fluid challenge (FC) in normotensive dogs under anaesthesia. The accuracy of pulse pressure variation (PPV), systolic pressure variation (SPV), stroke volume variation (SVV), and plethysmographic variability index (PVI) for predicting FR was also evaluated. Dogs were anaesthetised with methadone, propofol, and inhaled isoflurane in oxygen, under volume-controlled mechanical ventilation. FC was performed by the administration of 5 mL/kg of Ringer’s lactate within 5 min. Cardiac index (CI; L/min/m2), PPV, (%), SVV (%), SPV (%), and PVI (%) were registered before and after FC. Data were analysed with ANOVA and ROC tests (p < 0.05). Fluid responsiveness was defined as 15% increase in CI. Eighty dogs completed the study. Fifty (62.5%) were responders and 30 (37.5%) were nonresponders. The PPV, PVI, SPV, and SVV cut-off values (AUC, p) for discriminating responders from nonresponders were PPV >13.8% (0.979, <0.001), PVI >14% (0.956, <0.001), SPV >4.1% (0.793, <0.001), and SVV >14.7% (0.729, <0.001), respectively. Up to 62.5% of normotensive dogs under inhalant anaesthesia may be fluid responders. PPV and PVI have better diagnostic accuracy to predict FR, compared to SPV and SVV
Pulse Pressure Variation Can Predict the Hemodynamic Response to Pneumoperitoneum in Dogs: A Retrospective Study
Pneumoperitoneum may induce important hemodynamic alterations in healthy subjects. Pulse pressure variation (PPV) is a hemodynamic parameter able to discriminate preload dependent subjects. Anesthesia records of dogs undergoing laparoscopy were retrospectively evaluated. The anesthetic protocol included acepromazine, methadone, propofol and isoflurane administered with oxygen under mechanical ventilation. The hemodynamic parameters were considered five minutes before (BASE) and ten minutes after (P10) the pneumoperitoneum. Based on the cardiac index (CI) variation, at P10, dogs were classified as sensitive (S group, CI ≤ 15%) and non-sensitive (NO-S group). Data were analyzed with the ANOVA test and the ROC curve (p < 0.05). Fifty-five percent of dogs (S) had a reduction of CI ≥ 15% at P10 (2.97 ± 1.4 L/min/m2) compared to BASE (4.32 ± 1.62 L/min/m2) and at P10 in the NO-S group (4.51 ± 1.41 L/min/m2). PPV at BASE was significantly higher in the S group (22.4% ± 6.1%) compared to the NO-S group (10.9% ± 3.3%). The ROC curve showed a threshold of PPV > 16% to distinguish the S and NO-S groups. PPV may be a valid predictor of the hemodynamic response to pneumoperitoneum in dogs. A PPV > 16% can identify patients that may require fluid administration before the creation of pneumoperitoneum
Intraoperative Assessment of Fluid Responsiveness in Normotensive Dogs under Isoflurane Anaesthesia
The aim of this study was to evaluate the incidence of fluid responsiveness (FR) to a fluid challenge (FC) in normotensive dogs under anaesthesia. The accuracy of pulse pressure variation (PPV), systolic pressure variation (SPV), stroke volume variation (SVV), and plethysmographic variability index (PVI) for predicting FR was also evaluated. Dogs were anaesthetised with methadone, propofol, and inhaled isoflurane in oxygen, under volume-controlled mechanical ventilation. FC was performed by the administration of 5 mL/kg of Ringer’s lactate within 5 min. Cardiac index (CI; L/min/m2), PPV, (%), SVV (%), SPV (%), and PVI (%) were registered before and after FC. Data were analysed with ANOVA and ROC tests (p < 0.05). Fluid responsiveness was defined as 15% increase in CI. Eighty dogs completed the study. Fifty (62.5%) were responders and 30 (37.5%) were nonresponders. The PPV, PVI, SPV, and SVV cut-off values (AUC, p) for discriminating responders from nonresponders were PPV >13.8% (0.979, <0.001), PVI >14% (0.956, <0.001), SPV >4.1% (0.793, <0.001), and SVV >14.7% (0.729, <0.001), respectively. Up to 62.5% of normotensive dogs under inhalant anaesthesia may be fluid responders. PPV and PVI have better diagnostic accuracy to predict FR, compared to SPV and SVV