69 research outputs found

    The double life of electrons in magnetic iron pnictides, as revealed by NMR

    Full text link
    We present a phenomenological, two-fluid approach to understanding the magnetic excitations in Fe pnictides, in which a paramagnetic fluid with gapless, incoherent particle-hole excitations coexists with an antiferromagnetic fluid with gapped, coherent spin wave excitations. We show that this two-fluid phenomenology provides an excellent quantitative description of NMR data for magnetic "122" pnictides, and argue that it finds a natural justification in LSDA and spin density wave calculations. We further use this phenomenology to estimate the maximum renormalisation of the ordered moment that can follow from low-energy spin fluctuations in Fe pnictides. We find that this is too small to account for the discrepancy between ab intio calculations and neutron scattering measurements.Comment: Accepted for publication in Europhys. Lett. 6 pages, 4 figure

    Collinear order in a frustrated three-dimensional spin-12\frac12 antiferromagnet Li2_2CuW2_2O8_8

    Full text link
    Magnetic frustration in three dimensions (3D) manifests itself in the spin-12\frac12 insulator Li2_2CuW2_2O8_8. Density-functional band-structure calculations reveal a peculiar spin lattice built of triangular planes with frustrated interplane couplings. The saturation field of 29 T contrasts with the susceptibility maximum at 8.5 K and a relatively low N\'eel temperature TN3.9T_N\simeq 3.9 K. Magnetic order below TNT_N is collinear with the propagation vector (0,12,0)(0,\frac12,0) and an ordered moment of 0.65(4) μB\mu_B according to neutron diffraction data. This reduced ordered moment together with the low maximum of the magnetic specific heat (Cmax/R0.35C^{\max}/R\simeq 0.35) pinpoint strong magnetic frustration in 3D. Collinear magnetic order suggests that quantum fluctuations play crucial role in this system, where a non-collinear spiral state would be stabilized classically.Comment: published version with supplemental material merged into the tex

    Magnetic-field enhanced aniferromagnetism in non-centrosymmetric heavy-fermion superconductor CePt3_3Si

    Full text link
    The effect of magnetic field on the static and dynamic spin correlations in the non-centrosymmetric heavy-fermion superconductor CePt3_3Si was investigated by neutron scattering. The application of a magnetic field B increases the antiferromagnetic (AFM) peak intensity. This increase depends strongly on the field direction: for B{\parallel}[0 0 1] the intensity increases by a factor of 4.6 at a field of 6.6 T, which corresponds to more than a doubling of the AFM moment, while the moment increases by only 10 % for B{\parallel}[1 0 0] at 5 T. This is in strong contrast to the inelastic response near the antiferromagnetic ordering vector, where no marked field variations are observed for B{\parallel}[0 0 1] up to 3.8 T. The results reveal that the AFM state in CePt3_3Si, which coexists with superconductivity, is distinctly different from other unconventional superconductors.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.

    Dimensional reduction by pressure in the magnetic framework material CuF2_{2}(D2_{2}O)2_{2}pyz: from spin-wave to spinon excitations

    Full text link
    Metal organic magnets have enormous potential to host a variety of electronic and magnetic phases that originate from a strong interplay between the spin, orbital and lattice degrees of freedom. We control this interplay in the quantum magnet CuF2_2(D2_2O)2_2pyz by using high pressure to drive the system through a structural and magnetic phase transition. Using neutron scattering, we show that the low pressure state, which hosts a two-dimensional square lattice with spin-wave excitations and a dominant exchange coupling of 0.89 meV, transforms at high pressure into a one-dimensional spin-chain hallmarked by a spinon continuum and a reduced exchange interaction of 0.43 meV. This direct microscopic observation of a magnetic dimensional crossover as a function of pressure opens up new possibilities for studying the evolution of fractionalised excitations in low dimensional quantum magnets and eventually pressure-controlled metal--insulator transitions

    Gains from the upgrade of the cold neutron triple-axis spectrometer FLEXX at the BER-II reactor

    Full text link
    The upgrade of the cold neutron triple-axis spectrometer FLEXX is described. We discuss the characterisation of the gains from the new primary spectrometer, including a larger guide and double focussing monochromator, and present measurements of the energy and momentum resolution and of the neutron flux of the instrument. We found an order of magnitude gain in intensity (at the cost of coarser momentum resolution), and that the incoherent elastic energy widths are measurably narrower than before the upgrade. The much improved count rate should allow the use of smaller single crystals samples and thus enable the upgraded FLEXX spectrometer to continue making leading edge measurements.Comment: 8 pages, 7 figures, 5 table

    Spin correlations and exchange in square lattice frustrated ferromagnets

    Full text link
    The J1-J2 model on a square lattice exhibits a rich variety of different forms of magnetic order that depend sensitively on the ratio of exchange constants J2/J1. We use bulk magnetometry and polarized neutron scattering to determine J1 and J2 unambiguously for two materials in a new family of vanadium phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground state is reduced, and the diffuse magnetic scattering is enhanced, as the predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure
    corecore