36 research outputs found

    Improved quantum metrology using quantum error-correction

    Full text link
    We consider quantum metrology in noisy environments, where the effect of noise and decoherence limits the achievable gain in precision by quantum entanglement. We show that by using tools from quantum error-correction this limitation can be overcome. This is demonstrated in two scenarios, including a many-body Hamiltonian with single-qubit dephasing or depolarizing noise, and a single-body Hamiltonian with transversal noise. In both cases we show that Heisenberg scaling, and hence a quadratic improvement over the classical case, can be retained. Moreover, for the case of frequency estimation we find that the inclusion of error-correction allows, in certain instances, for a finite optimal interrogation time even in the asymptotic limit.Comment: Version 2 is the published version. Appendices contain Supplemental materia

    Macroscopic superpositions require tremendous measurement devices

    Full text link
    We consider fundamental limits on the detectable size of macroscopic quantum superpositions. We argue that a full quantum mechanical treatment of system plus measurement device is required, and that a (classical) reference frame for phase or direction needs to be established to certify the quantum state. When taking the size of such a classical reference frame into account, we show that to reliably distinguish a quantum superposition state from an incoherent mixture requires a measurement device that is quadratically bigger than the superposition state. Whereas for moderate system sizes such as generated in previous experiments this is not a stringent restriction, for macroscopic superpositions of the size of a cat the required effort quickly becomes intractable, requiring measurement devices of the size of the Earth. We illustrate our results using macroscopic superposition states of photons, spins, and position. Finally, we also show how this limitation can be circumvented by dealing with superpositions in relative degrees of freedom.Comment: 20 pages (including appendices), 1 Figur

    On the epistemic view of quantum states

    Full text link
    We investigate the strengths and limitations of the Spekkens toy model, which is a local hidden variable model that replicates many important properties of quantum dynamics. First, we present a set of five axioms that fully encapsulate Spekkens' toy model. We then test whether these axioms can be extended to capture more quantum phenomena, by allowing operations on epistemic as well as ontic states. We discover that the resulting group of operations is isomorphic to the projective extended Clifford Group for two qubits. This larger group of operations results in a physically unreasonable model; consequently, we claim that a relaxed definition of valid operations in Spekkens' toy model cannot produce an equivalence with the Clifford Group for two qubits. However, the new operations do serve as tests for correlation in a two toy bit model, analogous to the well known Horodecki criterion for the separability of quantum states.Comment: 16 pages, 9 figure

    Accessible coherence in open quantum system dynamics

    Get PDF
    Quantum coherence generated in a physical process can only be cast as a potentially useful resource if its effects can be detected at a later time. Recently, the notion of non-coherence-generating-and-detecting (NCGD) dynamics has been introduced and related to the classicality of the statistics associated with sequential measurements at different times. However, in order for a dynamics to be NCGD, its propagators need to satisfy a given set of conditions for all triples of consecutive times. We reduce this to a finite set of d(d 121) conditions, where d is the dimension of the quantum system, provided that the generator is time-independent. Further conditions are derived for the more general time-dependent case. The application of this result to the case of a qubit dynamics allows us to elucidate which kind of noise gives rise to non-coherence-generation-and-detection
    corecore