563 research outputs found
Dynamics of poroelastic filaments
We investigate the stability and geometrically non-linear dynamics of slender
rods made of a linear isotropic poroelastic material. Dimensional reduction
leads to the evolution equation for the shape of the poroelastica where, in
addition to the usual terms for the bending of an elastic rod, we find a term
that arises from fluid-solid interaction. Using the poroelastica equation as a
starting point, we consider the load controlled and displacement controlled
planar buckling of a slender rod, as well as the closely related instabilities
of a rod subject to twisting moments and compression when embedded in an
elastic medium. This work has applications to the active and passive mechanics
of thin filaments and sheets made from gels, plant organs such as stems, roots
and leaves, sponges, cartilage layers and bones.Comment: 34 pages, 13 figures, to appear in the Proceeding of the Royal
Societ
Red blood cells and other non-spherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition
We consider the motion of red blood cells and other non-spherical
microcapsules dilutely suspended in a simple shear flow. Our analysis indicates
that depending on the viscosity, membrane elasticity, geometry and shear rate,
the particle exhibits either tumbling, tank-treading of the membrane about the
viscous interior with periodic oscillations of the orientation angle, or
intermittent behavior in which the two modes occur alternately. For red blood
cells, we compute the complete phase diagram and identify a novel
tank-treading-to-tumbling transition at low shear rates. Observations of such
motions coupled with our theoretical framework may provide a sensitive means of
assessing capsule properties.Comment: 11 pages, 4 figure
Cell Size Control in Yeast
Cell size is an important adaptive trait that influences nearly all aspects of cellular physiology. Despite extensive characterization of the cell-cycle regulatory network, the molecular mechanisms coupling cell growth to division, and thereby controlling cell size, have remained elusive. Recent work in yeast has reinvigorated the size control field and suggested provocative mechanisms for the distinct functions of setting and sensing cell size. Further examination of size-sensing models based on spatial gradients and molecular titration, coupled with elucidation of the pathways responsible for nutrient-modulated target size, may reveal the fundamental principles of eukaryotic cell size control
Soft lubrication: the elastohydrodynamics of non-conforming and conforming contacts
We study the lubrication of fluid-immersed soft interfaces and show that
elastic deformation couples tangential and normal forces and thus generates
lift. We consider materials that deform easily, due to either geometry (e.g. a
shell) or constitutive properties (e.g. a gel or a rubber), so that the effects
of pressure and temperature on the fluid properties may be neglected. Four
different system geometries are considered: a rigid cylinder moving parallel to
a soft layer coating a rigid substrate; a soft cylinder moving parallel to a
rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and
finally a cylindrical conforming journal bearing coated with a thin soft layer.
In addition, for the particular case of a soft layer coating a rigid substrate
we consider both elastic and poroelastic material responses. For all these
cases we find the same generic behavior: there is an optimal combination of
geometric and material parameters that maximizes the dimensionless normal force
as a function of the softness parameter = hydrodynamic pressure/elastic
stiffness = surface deflection/gap thickness which characterizes the
fluid-induced deformation of the interface. The corresponding cases for a
spherical slider are treated using scaling concepts.Comment: 61 pages, 20 figures, 2 tables, submitted to Physics of Fluid
Dynamics of Fluid Vesicles in Oscillatory Shear Flow
The dynamics of fluid vesicles in oscillatory shear flow was studied using
differential equations of two variables: the Taylor deformation parameter and
inclination angle . In a steady shear flow with a low viscosity
of internal fluid, the vesicles exhibit steady tank-treading
motion with a constant inclination angle . In the oscillatory flow
with a low shear frequency, oscillates between or
around for zero or finite mean shear rate ,
respectively. As shear frequency increases, the vesicle
oscillation becomes delayed with respect to the shear oscillation, and the
oscillation amplitude decreases. At high with , another limit-cycle oscillation between and
is found to appear. In the steady flow, periodically rotates
(tumbling) at high , and and the vesicle shape
oscillate (swinging) at middle and high shear rate. In the
oscillatory flow, the coexistence of two or more limit-cycle oscillations can
occur for low in these phases. For the vesicle with a fixed shape,
the angle rotates back to the original position after an oscillation
period. However, it is found that a preferred angle can be induced by small
thermal fluctuations.Comment: 11 pages, 13 figure
3D printing of twisting and rotational bistable structures with tuning elements
Three-dimensional (3D) printing is ideal for the fabrication of various customized 3D components with fine details and material-design complexities. However, most components fabricated so far have been static structures with fixed shapes and functions. Here we introduce bistability to 3D printing to realize highly-controlled, reconfigurable structures. Particularly, we demonstrate 3D printing of twisting and rotational bistable structures. To this end, we have introduced special joints to construct twisting and rotational structures without post-assembly. Bistability produces a well-defined energy diagram, which is important for precise motion control and reconfigurable structures. Therefore, these bistable structures can be useful for simplified motion control in actuators or for mechanical switches. Moreover, we demonstrate tunable bistable components exploiting shape memory polymers. We can readjust the bistability-energy diagram (barrier height, slope, displacement, symmetry) after printing and achieve tunable bistability. This tunability can significantly increase the use of bistable structures in various 3D-printed components
Electrical Conductivity of Electrospun Polyaniline and Polyaniline-Blend Fibers and Mats
Submicrometer fibers of polyaniline (PAni) doped with (+)-camphor-10-sulfonic acid (HCSA) and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) were electrospun over a range of compositions. Continuous, pure PAni fibers doped with HCSA were also produced by coaxial electrospinning and subsequent removal of the PMMA shell polymer. The electrical conductivities of both the fibers and the mats were characterized. The electrical conductivities of the fibers were found to increase exponentially with the weight percent of doped PAni in the fibers, with values as high as 50 ± 30 S/cm for as-electrospun fibers of 100% doped PAni and as high as 130 ± 40 S/cm upon further solid state drawing. These high electrical conductivities are attributed to the enhanced molecular orientation arising from extensional deformation in the electrospinning process and afterward during solid state drawing. A model is proposed that permits the calculation of mat conductivity as a function of fiber conductivity, mat porosity, and fiber orientation distribution; the results agree quantitatively with the independently measured mat conductivities.United States. Army Research Office (Institute for Soldier Nanotechnologies, Contract ARO W911NF-07-D- 0004
Stochastic E2F Activation and Reconciliation of Phenomenological Cell-Cycle Models
A new, stochastic model of entry into the mammalian cell cycle provides a mechanistic understanding of the temporal variability observed across populations of cells and reconciles previously proposed phenomenological cell-cycle models
- …