40 research outputs found

    Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions.

    Get PDF
    We have studied a series of samples of bovine serum albumin (BSA) solutions with protein concentration, c, ranging from 2 to 500 mg/mL and ionic strength, I, from 0 to 2 M by small-angle X-ray scattering (SAXS). The scattering intensity distribution was compared to simulations using an oblate ellipsoid form factor with radii of 17 × 42 × 42 Å, combined with either a screened Coulomb, repulsive structure factor, S SC (q), or an attractive square-well structure factor, S SW (q). At pH ) 7, BSA is negatively charged. At low ionic strength, I < 0.3 M, the total interaction exhibits a decrease of the repulsive interaction when compared to the salt-free solution, as the net surface charge is screened, and the data can be fitted by assuming an ellipsoid form factor and screened Coulomb interaction. At moderate ionic strength (0.3-0.5 M), the interaction is rather weak, and a hard-sphere structure factor has been used to simulate the data with a higher volume fraction. Upon further increase of the ionic strength (I g 1.0 M), the overall interaction potential was dominated by an additional attractive potential, and the data could be successfully fitted by an ellipsoid form factor and a square-well potential model. The fit parameters, well depth and well width, indicate that the attractive potential caused by a high salt concentration is weak and long-ranged. Although the long-range, attractive potential dominated the protein interaction, no gelation or precipitation was observed in any of the samples. This is explained by the increase of a short-range, repulsive interaction between protein molecules by forming a hydration layer with increasing salt concentration. The competition between long-range, attractive and shortrange, repulsive interactions accounted for the stability of concentrated BSA solution at high ionic strength

    Measurement of gas-phase OH radical oxidation and film thickness of organic films at the air–water interface using material extracted from urban, remote and wood smoke aerosol

    Get PDF
    The presence of an organic film on a cloud droplet or aqueous aerosol particle has the potential to alter the chemical, optical and physical properties of the droplet or particle. In the study presented, water insoluble organic materials extracted from urban, remote (Antarctica) and wood burning atmospheric aerosol were found to have stable, compressible, films at the air–water interface that were typically ∼6–18 Å thick. These films are reactive towards gas-phase OH radicals and decay exponentially, with bimolecular rate constants for reaction with gas-phase OH radicals of typically 0.08–1.5 × 10−10 cm3 molecule−1 s−1. These bimolecular rate constants equate to initial OH radical uptake coefficients estimated to be ∼0.6–1 except woodsmoke (∼0.05). The film thickness and the neutron scattering length density of the extracted atmosphere aerosol material (from urban, remote and wood burning) were measured by neutron reflection as they were exposed to OH radicals. For the first time neutron reflection has been demonstrated as an excellent technique for studying the thin films formed at air–water interfaces from materials extracted from atmospheric aerosol samples. Additionally, the kinetics of gas-phase OH radicals with a proxy compound, the lipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) was studied displaying significantly different behaviour, thus demonstrating it is not a good proxy for atmospheric materials that may form films at the air–water interface. The atmospheric lifetimes, with respect to OH radical oxidation, of the insoluble organic materials extracted from atmospheric aerosol at the air–water interface were a few hours. Relative to a possible physical atmospheric lifetime of 4 days, the oxidation of these films is important and needs inclusion in atmospheric models. The optical properties of these films were previously reported [Shepherd et al., Atmos. Chem. Phys., 2018, 18, 5235–5252] and there is a significant change in top of the atmosphere albedo for these thin films on core–shell atmospheric aerosol using the film thickness data and confirmation of stable film formation at the air–water interface presented here

    Interaction of proteins with oligo(ethylene glycol) self-assembled monolayers

    No full text
    The aim of this thesis is the study of protein resistant oligo(ethylene glycol) (OEG) self-assembled monolayers (SAMs) using in situ techniques, such as neutron reflectivity (NR), polarisation modulation infrared spectroscopy (PMIR) and small-angle x-ray scattering (SAXS). In order to elucidate the mechanisms that lead to the nonfouling properties of these SAMs, the SAM-water, protein-protein and protein-SAM interactions have been studied separately. NR measurements, focused on the solid-liquid interface between OEG SAMs and water, show clear evidence of an extended layer with reduced density water. The reduction in density is up to 10% compared to the bulk value, and extends up to 5 nm into the bulk. The effective area (density reduction x length) of this reduced density water layer did not significantly change when the temperature was reduced to 5°C. In a complementary study, the interaction of water with protein-resistant HS(CHV2)11(OCH2CH2)3OMe monolayers was examined using in and ex situ PMIR. In particular, shifts in the position of the characteristic C-O-C stretching vibration were observed after the monolayers had been exposed to water. The shift in frequency increased when the SAM was observed in direct contact with a thin layer of water. It was found that the magnitude of the shift also depended on the surface coverage of the SAM. These results suggest a rather strong interaction of oligo(ethylene glycol) SAMs with water and indicate the penetration of water into the upper region of the monolayer. These findings indicate the presence of a tightly bound water layer at the SAM-water interface. Further NR studies of the interface between OEG SAMs and a highly concentrated protein solution revealed an oscillating protein density profile. A protein depleted region of about 4-5 nm close to the SAM was followed by a more densely populated region of 5-6 nm. These oscillations were then rapidly damped out until the bulk value was reached. The influence of temperature and salt concentration on the protein density profile was small, indicating a rather minor contribution of electrostatic interactions to the protein repulsive force. SAXS measurements of OEG coated gold colloids mixed with proteins in solution did also not show any pronounced salt concentration dependence of the colloid-protein interaction. The strong association of water with the SAM and the layer of tightly bound water, together with the lack of electrostatic repulsion, suggest that the adsorption of proteins is energetically hindered by the presence of a strongly bound hydration layer.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Interaction of proteins with oligo(ethylene glycol) self-assembled monolayers

    No full text
    The aim of this thesis is the study of protein resistant oligo(ethylene glycol) (OEG) self-assembled monolayers (SAMs) using in situ techniques, such as neutron reflectivity (NR), polarisation modulation infrared spectroscopy (PMIR) and small-angle x-ray scattering (SAXS). In order to elucidate the mechanisms that lead to the nonfouling properties of these SAMs, the SAM-water, protein-protein and protein-SAM interactions have been studied separately.NR measurements, focused on the solid-liquid interface between OEG SAMs and water, show clear evidence of an extended layer with reduced density water. The reduction in density is up to 10% compared to the bulk value, and extends up to 5 nm into the bulk. The effective area (density reduction x length) of this reduced density water layer did not significantly change when the temperature was reduced to 5°C. In a complementary study, the interaction of water with protein-resistant HS(CHV2)11(OCH2CH2)3OMe monolayers was examined using in and ex situ PMIR. In particular, shifts in the position of the characteristic C-O-C stretching vibration were observed after the monolayers had been exposed to water. The shift in frequency increased when the SAM was observed in direct contact with a thin layer of water. It was found that the magnitude of the shift also depended on the surface coverage of the SAM. These results suggest a rather strong interaction of oligo(ethylene glycol) SAMs with water and indicate the penetration of water into the upper region of the monolayer. These findings indicate the presence of a tightly bound water layer at the SAM-water interface.Further NR studies of the interface between OEG SAMs and a highly concentrated protein solution revealed an oscillating protein density profile. A protein depleted region of about 4-5 nm close to the SAM was followed by a more densely populated region of 5-6 nm. These oscillations were then rapidly damped out until the bulk value was reached. The influence of temperature and salt concentration on the protein density profile was small, indicating a rather minor contribution of electrostatic interactions to the protein repulsive force. SAXS measurements of OEG coated gold colloids mixed with proteins in solution did also not show any pronounced salt concentration dependence of the colloid-protein interaction.The strong association of water with the SAM and the layer of tightly bound water, together with the lack of electrostatic repulsion, suggest that the adsorption of proteins is energetically hindered by the presence of a strongly bound hydration layer.</p

    Data sets for "Structural Investigation of Sulfobetaines and Phospholipid Monolayers at the air-water interface"

    No full text
    Normalized neutron and X-ray reflectivity data for Langmuir monolayers composed of mixtures of dimyristoylphosphatidylcholine, DMPC and a single 18-carbon tailed sulfobetaine, SB3-18 on pure water at room temperature and at surface pressures of 15 mN/m and 35 mN/m. Neutron measurements are carried out on D2O and air contrast matched water. Measurements were carried out with deuterated and hydrogenated lipids.Neutron reflectivity measurements were carried out on Inter at the ISIS Pulsed Neutron and Muon source at room temperature. Mixtures of DMPC and SB3-18 were investigates on D2O and air contrast matched water, ACMW. Deuterated phospholipid and sulfobetaine were used along with hydrogenated samples. X-Ray reflectivity measurements were carried out on I07 at The Diamond Light Source. As above mixtures of DMPC and SB3-18 were carried out on a water subphase at room temperature under a helium atmosphere. For both data sets are carried out at two surface pressures, the surface pressure in both cases is controlled by a Nima Langmuir trough.Neutron reflectivity data was stitched together and normalised using Mantid software. X-Ray reflectivity data was also normalised to the critical edge and by the incident flux at the Diamond light source.Reflectivity data, here given as .dat files, can be fitted and plotted using a range of programs, the Motofit package for Igor Pro, the Motofit GUI or RASCAL are some examples

    Structural effects of the dispersing agent polysorbate 80 on liquid crystalline nanoparticles of soy phosphatidylcholine and glycerol dioleate.

    No full text
    Well-defined, stable and highly structured I2 (Fd3[combining macron]m) liquid crystalline nanoparticles (LCNP) of 50/50 (wt/wt) soy phosphatidylcholine (SPC)/glycerol dioleate (GDO), can be formed by using a low fraction (5-10 wt%) of the dispersing polymeric surfactant polyoxyethylene (20) sorbitan monooleate (polysorbate 80 or P80). In the present study we used small angle neutron scattering (SANS) and deuterated P80 (d-P80) to determine the location and concentration of P80 within the LCNP and small angle X-ray scattering (SAXS) to reveal the internal structure. SANS data suggests that some d-P80 already penetrates the particle core at 5%. However, the content of d-P80 is still low enough not to significantly change the internal Fd3[combining macron]m structure of the LCNP. At higher fractions of P80 a phase separation occurs, in which a SPC and P80 rich phase is formed at the particle surface. The surface layer becomes gradually richer in both solvent and d-P80 when the surfactant concentration is increased from 5 to 15%, while the core of the particle is enriched by GDO, resulting in loss of internal structure and reduced hydration. We have used neutron reflectometry to reveal the location of the stabiliser within the adsorbed layer on an anionic silica and cationic (aminopropyltriethoxysilane (APTES) silanized) surface. d-P80 is enriched closest to the supporting surface and slightly more so for the cationic APTES surface. The results are relevant not only for the capability of LCNPs as drug delivery vehicles but also as means of preparing functional surface coatings

    Sticking particles to solid surfaces using Moringa oleifera proteins as a glue

    Get PDF
    Experimental studies have been made to test the idea that seed proteins from Moringa oleifera which are novel, natural flocculating agents for many particles could be used to promote adhesion at planar interfaces and hence provide routes to useful nanostructures. The proteins bind irreversibly to silica interfaces. Surfaces that had been exposed to protein solutions and rinsed were then exposed to dispersions of sulfonated polystyrene latex. Atomic force microscopy was used to count particle density and identified that the sticking probability was close to 1. Measurements with a quartz crystal microbalance confirmed the adhesion and indicated that repeated exposures to solutions of Moringa seed protein and particles increased the coverage. Neutron reflectivity and scattering experiments indicate that particles bind as a monolayer. The various results show that the 2S albumin seed protein can be used to fix particles at interfaces and suggest routes for future developments in making active filters or improved interfaces for photonic devices
    corecore