35 research outputs found

    Stimulation of sphingosine 1-phosphate signaling as an alveolar cell survival strategy in emphysema

    Get PDF
    RATIONALE: Vascular endothelial growth factor receptor (VEGFR) inhibition increases ceramides in lung structural cells of the alveolus, initiating apoptosis and alveolar destruction morphologically resembling emphysema. The effects of increased endogenous ceramides could be offset by sphingosine 1-phosphate (S1P), a prosurvival by-product of ceramide metabolism. OBJECTIVES: The aims of our work were to investigate the sphingosine-S1P-S1P receptor axis in the VEGFR inhibition model of emphysema and to determine whether stimulation of S1P signaling is sufficient to functionally antagonize alveolar space enlargement. METHODS: Concurrent to VEGFR blockade in mice, S1P signaling augmentation was achieved via treatment with the S1P precursor sphingosine, S1P agonist FTY720, or S1P receptor-1 (S1PR1) agonist SEW2871. Outcomes included sphingosine kinase-1 RNA expression and activity, sphingolipid measurements by combined liquid chromatography-tandem mass spectrometry, immunoblotting for prosurvival signaling pathways, caspase-3 activity and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assays, and airspace morphometry. MEASUREMENTS AND MAIN RESULTS: Consistent with previously reported de novo activation of ceramide synthesis, VEGFR inhibition triggered increases in lung ceramides, dihydroceramides, and dihydrosphingosine, but did not alter sphingosine kinase activity or S1P levels. Administration of sphingosine decreased the ceramide-to-S1P ratio in the lung and inhibited alveolar space enlargement, along with activation of prosurvival signaling pathways and decreased lung parenchyma cell apoptosis. Sphingosine significantly opposed ceramide-induced apoptosis in cultured lung endothelial cells, but not epithelial cells. FTY720 or SEW2871 recapitulated the protective effects of sphingosine on airspace enlargement concomitant with attenuation of VEGFR inhibitor-induced lung apoptosis. CONCLUSIONS: Strategies aimed at augmenting the S1P-S1PR1 signaling may be effective in ameliorating the apoptotic mechanisms of emphysema development

    Erythropoietins (Epostim®) during chemoradiotherapy for malignancies in anemic patients

    Get PDF
    Anemia in female patients with solid neoplasms is corrected to normalize hemoglobin levels, to increase quality of life, and to improve antitumor therapy tolerance. The clinical application of recombinant human erythropoietin preparations has become an important treat- ment step that permits multiple hemotransfusions to be avoided. Epostim is effective and safe in increasing hemoglobin and packed cell volume and in overcoming the additive toxicity of chemo- and radiotherapy

    К вопросу об информативности кривой "поток–объем" форсированного выдоха

    Get PDF
    This report introduces a mathematical model of forced expiration to analyze pulmonary function. Results of 3-year lung function monitoring of an ex-smoker have been shown in the paper. Actual values of lung volumes and airway resistance were used for modeling. The computerized data were compared to the flow-volume curve parameters and lung volumes measured during the forced expiration. Weak correlation between the "flow-volume" curve parameters and the time after quitting smoking together with significant change in the lung volumes and the airway resistance seen in the study could be due to some processes which have not been followed in this study (lung compliance, airway resistance at forced expiration, and elastic properties of airway walls).The results demonstrated that mathematical models could increase informative value of pulmonary functional tests. In addition, the model could emphasize additional functional tests for better diagnostic usefulness of functional investigations.Приводится пример использования разработанной авторами ранее математической модели форсированного выдоха для анализа результатов пульмонологических функциональных тестов. Анализируются результаты 3-летнего исследования параметров легких пациента, прекратившего курение. При расчетах в качестве параметров модели задавались измеренные величины характерных легочных объемов и сопротивление дыхательных путей. Сопоставление результатов расчета с опытными данными осуществлялось по значениям характерных для кривой "поток-объем" скоростей и изменениям объема легких в течение форсированного выдоха. Расчеты показали, что наблюдаемая слабая зависимость формы кривой "поток-объем" от времени, прошедшего с момента прекращения курения, при заметных изменениях характерных легочных объемов и сопротивления дыхательных путей может быть связана с изменением параметров, не контролировавшихся во время данного исследования (растяжимость легких, параметры, определяющие сопротивление дыхательных путей при форсированных маневрах, упругие свойства стенок дыхательных путей). Полученные в работе результаты показывают, что привлечение математических моделей легких может существенно повысить информативность стандартных пульмонологических тестов. Кроме того, модельные расчеты позволяют повысить диагностическую достоверность выводов функционального исследования

    Screening of conditionally reprogrammed patient-derived carcinoma cells identifies ERCC3-MYC interactions as a target in pancreatic cancer

    Get PDF
    ©2016 AACR.Purpose: Even when diagnosed prior to metastasis, pancreatic ductal adenocarcinoma (PDAC) is a devastating malignancy with almost 90% lethality, emphasizing the need for new therapies optimally targeting the tumors of individual patients. Experimental Design: We first developed a panel of new physiologic models for study of PDAC, expanding surgical PDAC tumor samples in culture using short-term culture and conditional reprogramming with the Rho kinase inhibitor Y-27632, and creating matched patient-derived xenografts (PDX). These were evaluated for sensitivity to a large panel of clinical agents, and promising leads further evaluated mechanistically. Results: Only a small minority of tested agents was cytotoxic in minimally passaged PDAC cultures in vitro. Drugs interfering with protein turnover and transcription were among most cytotoxic. Among transcriptional repressors, triptolide, a covalent inhibitor of ERCC3, was most consistently effective in vitro and in vivo causing prolonged complete regression in multiple PDX models resistant to standard PDAC therapies. Importantly, triptolide showed superior activity in MYC-amplified PDX models and elicited rapid and profound depletion of the oncoprotein MYC, a transcriptional regulator. Expression of ERCC3 and MYC was interdependent in PDACs, and acquired resistance to triptolide depended on elevated ERCC3 and MYC expression. The Cancer Genome Atlas analysis indicates ERCC3 expression predicts poor prognosis, particularly in CDKN2A-null, highly proliferative tumors. Conclusions: This provides initial preclinical evidence for an essential role of MYC-ERCC3 interactions in PDAC, and suggests a new mechanistic approach for disruption of critical survival signaling in MYC-dependent cancers

    Liquid flow in a tube with deforming walls in the presence of valves

    No full text

    The Role of Chromatin Assembly Factors in Induced Mutagenesis at Low Levels of DNA Damage

    No full text
    The problem of low-dose irradiation has been discussed in the scientific literature for several decades, but it is impossible to come to a generally accepted conclusion about the presence of any specific features of low-dose irradiation in contrast to acute irradiation. We were interested in the effect of low doses of UV radiation on the physiological processes, including repair processes in cells of the yeast Saccharomyces cerevisiae, in contrast to high doses of radiation. Cells utilize excision repair and DNA damage tolerance pathways without significant delay of the cell cycle to address low levels of DNA damage (such as spontaneous base lesions). For genotoxic agents, there is a dose threshold below which checkpoint activation is minimal despite the measurable activity of the DNA repair pathways. Here we report that at ultra-low levels of DNA damage, the role of the error-free branch of post-replicative repair in protection against induced mutagenesis is key. However, with an increase in the levels of DNA damage, the role of the error-free repair branch is rapidly decreasing. We demonstrate that with an increase in the amount of DNA damage from ultra-small to high, asf1Δ-specific mutagenesis decreases catastrophically. A similar dependence is observed for mutants of gene-encoding subunits of the NuB4 complex. Elevated levels of dNTPs caused by the inactivation of the SML1 gene are responsible for high spontaneous reparative mutagenesis. The Rad53 kinase plays a key role in reparative UV mutagenesis at high doses, as well as in spontaneous repair mutagenesis at ultra-low DNA damage levels
    corecore