56 research outputs found

    Recovery from acidification of lakes in Finland, Norway and Sweden 1990?1999

    No full text
    International audienceSulphate deposition has decreased by about 60% in the Nordic countries since the early 1980s. Nitrogen deposition has been roughly constant during the past 20 years, with only a minor decrease in the late 1990s. The resulting changes in the chemistry of small lakes have been followed by national monitoring programmes initiated in the 1980s in Finland (163 lakes), Norway (100 lakes) and Sweden (81 lakes). These lakes are partly a subset from the survey of 5690 lakes in the Northern European lake survey of 1995. Trend analyses on data for the period 1990-1999 show that the non-marine sulphate concentrations in lakes have decreased significantly in 69% of the monitored lakes. Changes were largest in lakes with the highest mean concentrations. Nitrate concentrations, on the other hand, were generally low and showed no systematic changes. Concentrations of non-marine base cations decreased in 26% of the lakes, most probably an ionic-strength effect due to the lower concentrations of mobile strong-acid anions. Acid neutralising capacity increased in 32% of the lakes. Trends in recovery were in part masked by large year-to-year variations in sea-salt inputs and by increases in total organic carbon concentrations. These changes were most probably the result of climatic variations. Nordic lakes, therefore, show clear signs of recovery from acidification. Recovery began in the 1980s and accelerated in the 1990s. Reductions in sulphur deposition are the major "driving force" in the process of recovery from acidification. Further recovery can be expected in the next 10 years if the Gothenburg protocol on emissions of acidifying pollutants is implemented. Keywords: Nordic countries, sulphur deposition, lakes, recover

    Recovery from acidification of lakes in Finland, Norway and Sweden 1990–1999

    Get PDF
    Sulphate deposition has decreased by about 60% in the Nordic countries since the early 1980s. Nitrogen deposition has been roughly constant during the past 20 years, with only a minor decrease in the late 1990s. The resulting changes in the chemistry of small lakes have been followed by national monitoring programmes initiated in the 1980s in Finland (163 lakes), Norway (100 lakes) and Sweden (81 lakes). These lakes are partly a subset from the survey of 5690 lakes in the Northern European lake survey of 1995. Trend analyses on data for the period 1990-1999 show that the non-marine sulphate concentrations in lakes have decreased significantly in 69% of the monitored lakes. Changes were largest in lakes with the highest mean concentrations. Nitrate concentrations, on the other hand, were generally low and showed no systematic changes. Concentrations of non-marine base cations decreased in 26% of the lakes, most probably an ionic-strength effect due to the lower concentrations of mobile strong-acid anions. Acid neutralising capacity increased in 32% of the lakes. Trends in recovery were in part masked by large year-to-year variations in sea-salt inputs and by increases in total organic carbon concentrations. These changes were most probably the result of climatic variations. Nordic lakes, therefore, show clear signs of recovery from acidification. Recovery began in the 1980s and accelerated in the 1990s. Reductions in sulphur deposition are the major "driving force" in the process of recovery from acidification. Further recovery can be expected in the next 10 years if the Gothenburg protocol on emissions of acidifying pollutants is implemented. Keywords: Nordic countries, sulphur deposition, lakes, recover

    Long-term changes in acidification and recovery at nine calibrated catchments in Norway, Sweden and Finland

    Get PDF
    International agreements to reduce the emissions of acidifying pollutants have resulted in major changes in deposition of sulphur and nitrogen in southern Scandinavia over the past 25 years. Long-term monitoring of deposition and run-off chemistry over the past 12-25 years at nine small calibrated catchments in Finland, Norway and Sweden provide the basis for analysis of trends with special attention to recovery in response to decreased sulphur and nitrogen deposition in the 1980s and 1990s. During the 1980s and 1990s sulphate deposition in the region decreased by 30 to 60%, whereas inorganic nitrogen deposition showed very little change until the mid-1990s. Deposition of non-marine base cations (especially calcium) declined in the 1990s most markedly in southern Finland. Run-off response to these changes in deposition has been rapid and clear at the nine catchments. Sulphate and base cations (mostly calcium) concentrations declined and acid neutralising capacity increased. Occasional years with unusually high inputs of sea-salt confound the general trends. Trends at all the catchments show the same general picture as that from small lakes in Scandinavia and in acid-sensitive waters elsewhere in Europe.</p> <p style='line-height: 20px;'><b>Keywords: </b>acidification, recovery, Scandinavia, catchment, trend analysi

    Long-term changes in acidification and recovery at nine calibrated catchments in Norway, Sweden and Finland

    No full text
    International audienceInternational agreements to reduce the emissions of acidifying pollutants have resulted in major changes in deposition of sulphur and nitrogen in southern Scandinavia over the past 25 years. Long-term monitoring of deposition and run-off chemistry over the past 12-25 years at nine small calibrated catchments in Finland, Norway and Sweden provide the basis for analysis of trends with special attention to recovery in response to decreased sulphur and nitrogen deposition in the 1980s and 1990s. During the 1980s and 1990s sulphate deposition in the region decreased by 30 to 60%, whereas inorganic nitrogen deposition showed very little change until the mid-1990s. Deposition of non-marine base cations (especially calcium) declined in the 1990s most markedly in southern Finland. Run-off response to these changes in deposition has been rapid and clear at the nine catchments. Sulphate and base cations (mostly calcium) concentrations declined and acid neutralising capacity increased. Occasional years with unusually high inputs of sea-salt confound the general trends. Trends at all the catchments show the same general picture as that from small lakes in Scandinavia and in acid-sensitive waters elsewhere in Europe. Keywords: acidification, recovery, Scandinavia, catchment, trend analysi

    Norwegian lakes show widespread recovery from acidification; results from national surveys of lakewater chemistry 1986-1997

    No full text
    International audienceSurveys of 485 lakes in Norway conducted in 1986 and again in 1995 reveal widespread chemical recovery from acidification. Sulphate concentrations in lakes have decreased by 40% in acidified areas in southern Norway. This decrease has been compensated about 25% by decreases in concentrations of base cations and of 75% by increased Acid Neutralising Capacity (ANC). The increased ANC in turn reflects lower concentrations of acidic cations Aluminum (ALn+) and Hydrogen (H+). A sub-set of 78 of the 485 lakes sampled yearly between 1986 and 1997 shows that, at first most of the decrease in non-marine sulphate (SO4*) was compensated by a decrease in base cations, such that ANC remained unchanged. Then as SO4* continued to decrease, the concentrations of non- marine calcium and magnesium ((Ca+Mg)*) levelled out. Consequently, ANC increased, and H+ and Aln+ started to decrease. In eastern Norway, this shift occurred in 1989?90, and came slightly later in southern and western Norway. Similar shifts in trends in about 1991?92 can also be seen in the non-acidified areas in central and northern Norway. This shift in trends is not as pronounced in western Norway, perhaps because of the confounding influence of sea-salt episodes on water chemistry. This is the first documented national-scale recovery from acidification due to reduced acid deposition. Future climate warming and potentially increased N-leaching can counteract the positive trends in recovery from acidification

    Recovery from acidification of lakes in Finland, Norway and Sweden 1990–1999

    Get PDF
    International audienc

    Nitrogen dynamics in runoff from two small heathland catchments representing opposite extremes with respect to climate and N deposition in Norway

    No full text
    Effects of contrasting climatic conditions and nitrogen (N) deposition levels on streamwater N dynamics are assessed at two small heathland catchments; Dalelva in northern Norway (69&#176;N) and &#216;ygard in southwestern Norway (58&#176;N). The study comprises 11 years of data on climate, hydrology and N inputs/outputs from Dalelva and 8 years of corresponding data from &#216;ygard. Both sites are comparable in catchment size, geology and land cover characteristics, but have large differences in climate and N deposition. Dalelva is characterised by a cold, arctic climate and low N deposition (2-3 kg N ha–1y–1), whereas the &#216;ygard site has a more mild, humid climate with much larger N deposition (13–19 kg N ha–1yr–1). Streamwater nitrate (NO3&#8254;) concentrations at Dalelva generally were negligible during the growing season, but showed a steady increase during the dormant season until a maximum of 40-100 &#956;g N L–1 was reached just before snowmelt. At onset of the snowmelt flood, NO3&#8254; concentrations decreased momentarily to very low levels, suggesting that N eluted from the seasonal snowpack to a great extent was infiltrated and immobilised in the soils. At &#216;ygard, flood peaks occurred frequently during all seasons, and usually there was no distinct spring flood. A lack of clear dilution effects from floods on streamwater N3&#8254; concentrations may indicate a relatively high NO3&#8254; leaching potential in this catchment. On average, the annual NO3– export was negligible at Dalelva (–1yr–1), while at &#216;ygard it amounted to 3.0&#177;0.3 (&#177;1 s.d.) kg ha–1yr–1, or nearly 20% of the annual N deposition. In addition to this relatively high annual N loss, elevated NO3&#8254; concentrations during the growing season further indicate that the N supply at &#216;ygard is in excess of the combined plant and microbial demand. Keywords: catchments, surface water, nitrogen deposition, nitrate leaching, climate, hydrology, snowmelt, Dalelva brook, &#216;ygard broo
    corecore