19 research outputs found

    Loss-of-function/gain-of-function polymorphisms of the ATP sensitive P2X7R influence sepsis, septic shock, pneumonia, and survival outcomes

    Get PDF
    IntroductionExtracellular ATP (eATP) released from damaged cells activates the P2X7 receptor (P2X7R) ion channel on the surface of surrounding cells, resulting in calcium influx, potassium efflux and inflammasome activation. Inherited changes in the P2X7R gene (P2RX7) influence eATP induced responses. Single nucleotide polymorphisms (SNPs) of P2RX7 influence both function and signaling of the receptor, that in addition to ion flux includes pathogen control and immunity.MethodsSubjects (n = 105) were admitted to the ICU at the University Hospital Ulm, Germany between June 2018 and August 2019. Of these, subjects with a diagnosis of sepsis (n = 75), were also diagnosed with septic shock (n = 24), and/or pneumonia (n = 42). Subjects with pneumonia (n = 43) included those without sepsis (n = 1), sepsis without shock (n = 29) and pneumonia with septic shock (n = 13). Out of the 75 sepsis/septic shock patients, 33 patients were not diagnosed with pneumonia. Controls (n = 30) were recruited to the study from trauma patients and surgical patients without sepsis, septic shock, or pneumonia. SNP frequencies were determined for 16 P2RX7 SNPs known to affect P2X7R function, and association studies were performed between frequencies of these SNPs in sepsis, septic shock, and pneumonia compared to controls.ResultsThe loss-of-function (LOF) SNP rs17525809 (T253C) was found more frequently in patients with septic shock, and non-septic trauma patients when compared to sepsis. The LOF SNP rs2230911 (C1096G) was found to be more frequent in patients with sepsis and septic shock than in non-septic trauma patients. The frequencies of these SNPs were even higher in sepsis and septic patients with pneumonia. The current study also confirmed a previous study by our group that showed a five SNP combination that included the GOF SNPs rs208294 (C489T) and rs2230912 (Q460R) that was designated #21211 was associated with increased odds of survival in severe sepsis.DiscussionThe results found an association between expression of LOF P2RX7 SNPs and presentation to the ICU with sepsis, and septic shock compared to control ICU patients. Furthermore, frequencies of LOF SNPs were found to be higher in sepsis patients with pneumonia compared to those without pneumonia. In addition, a five SNP GOF combination was associated with increased odds of survival in severe sepsis. These results suggest that P2RX7 is required to control infection in pneumonia and that inheritance of LOF variants increases the risk of sepsis when associated with pneumonia. This study confirms that P2RX7 genotyping in pneumonia may identify patients at risk of developing sepsis. The study also identifies P2X7R as a target in sepsis associated with an excessive immune response in subjects with GOF SNP combinations

    R270C polymorphism leads to loss of function of the canine P2X7 receptor

    Get PDF
    The relative function of the P2X7 receptor, an ATP-gated ion channel, varies between humans due to polymorphisms in the P2RX7 gene. This study aimed to assess the functional impact of P2X7 variation in a random sample of the canine population. Blood and genomic DNA were obtained from 69 dogs selected as representatives of a cross section of different breeds. P2X7 function was determined by flow cytometric measurements of dye uptake and patch-clamp measurements of inward currents. P2X7 expression was determined by immunoblotting and immunocytochemistry. Sequencing was used to identify P2RX7 gene polymorphisms. P2X7 was cloned from an English springer spaniel, and point mutations were introduced into this receptor by site-directed mutagenesis. The relative function of P2X7 on monocytes varied between individual dogs. The canine P2RX7 gene encoded four missense polymorphisms: F103L and P452S, found in heterozygous and homozygous dosage, and R270C and R365Q, found only in heterozygous dosage. Moreover, R270C and R365Q were associated with the cocker spaniel and Labrador retriever, respectively. F103L, R270C, and R365Q but not P452S corresponded to decreased P2X7 function in monocytes but did not explain the majority of differences in P2X7 function between dogs, indicating that other factors contribute to this variability. Heterologous expression of site-directed mutants of P2X7 in human embryonic kidney-293 cells indicated that the R270C mutant was nonfunctional, the F103L and R365Q mutants had partly reduced function, and the P452S mutant functioned normally. Taken together, these data highlight that a R270C polymorphism has major functional impact on canine P2X7

    A P2RX7 single nucleotide polymorphism haplotype promotes exon 7 and 8 skipping and disrupts receptor function

    Get PDF
    P2X7 is an ATP-gated membrane ion channel that is expressed by multiple cell types. Brief exposure to ATP induces the opening of a nonselective cation channel; while repeated or prolonged exposure induces formation of a transmembrane pore. This process may be partially regulated by alternative splicing of full-length P2RX7A pre-mRNA, producing isoforms that delete or retain functional domains. Here, we report cloning and expression of a novel P2RX7 splice variant, P2RX7L, that is, characterized by skipping of exons 7 and 8. In HEK 293 cells, expression of P2RX7L produces a protein isoform, P2X7L, that forms a heteromer with P2X7A. A haplotype defined by six single nucleotide polymorphisms (SNPs) (rs208307, rs208306, rs36144485, rs208308, rs208309, and rs373655596) promotes allele-specific alternative splicing, increasing mRNA levels of P2RX7L and another isoform, P2RX7E, which in addition has a truncated C-terminus. Skipping of exons 7 and 8 is predicted to delete critical amino acids in the ATP-binding site. P2X7L-transfected HEK 293 cells have phagocytic but not channel, pore, or membrane-blebbing function, and double-transfected P2X7L and P2X7A cells have reduced pore function. Heteromeric receptor complexes of P2X7A and P2X7L are predicted to have reduced numbers of ATP-binding sites, which potentially alters receptor function compared to homomeric P2X7A complexes

    Pharmacological evaluation of novel bioisosteres of an adamantanyl benzamide P2X7 receptor antagonist

    Get PDF
    Adamantanyl benzamide 1 was identified as a potent P2X7R antagonist but failed to progress further due to poor metabolic stability. We describe the synthesis and SAR of a series of bioisosteres of benzamide 1 to explore improvements in the pharmacological properties of this lead. Initial efforts investigated a series of heteroaromatic bioisosteres, which demonstrated improved physicochemical properties but reduced P2X7R antagonism. Installation of bioisosteric fluorine on the adamantane bridgeheads was well tolerated and led to a series of bioisosteres with improved physicochemical properties and metabolic stability. Trifluorinated benzamide 34 demonstrated optimal physicochemical parameters, superior metabolic stability (ten times longer than lead benzamide 1), and an improved physicokinetic profile and proved effective in the presence of several known P2X7R polymorphisms

    Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women

    Get PDF
    The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide polymorphisms (SNP; c.151+1G>T, c.946G>A, c.1096C>G, c.1513A>C and c.1729T>A) and one gain-of-function SNP (c.489C>T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine (LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506 post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar spine BMD was measured at baseline and at 6–7 year follow-up. P2RX7 genotyping was performed by homogeneous mass extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P=0.004, β=−0.12) and follow-up (P=0.002, β=−0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n=48) had nearly ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n=84; rate of loss=−0.94%/year and −0.11%/year, respectively, P=0.0005, unpaired t-test). This is the first report that describes association of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at greater risk of developing osteoporosis

    Paroxetine suppresses recombinant human P2X7 responses

    Get PDF
    P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine

    Probenecid Blocks Human P2X7 Receptor-Induced Dye Uptake via a Pannexin-1 Independent Mechanism

    Get PDF
    P2X7 is a ligand-gated ion channel which is activated by ATP and displays secondary permeability characteristics. The mechanism of development of the secondary permeability pathway is currently unclear, although a role for the hemichannel protein pannexin-1 has been suggested. In this study we investigated the role of pannexin-1 in P2X7-induced dye uptake and ATP-induced IL-1β secretion from human monocytes. We found no pharmacological evidence for involvement of pannexin-1 in P2X7-mediated dye uptake in transfected HEK-293 cells with no inhibition seen for carbenoxolone and the pannexin-1 mimetic inhibitory peptide, 10Panx1. However, we found that probenecid inhibited P2X7-induced cationic and anionic dye uptake in stably transfected human P2X7 HEK-293 cells. An IC50 value of 203 μM was calculated for blockade of ATP-induced responses at human P2X7. Probenecid also reduced dye uptake and IL-1β secretion from human CD14+ monocytes whereas carbenoxolone and 10Panx1 showed no inhibitory effect. Patch clamp and calcium indicator experiments revealed that probenecid directly blocks the human P2X7 receptor

    Probenecid blocks P2X7-mediated calcium influx and inward currents in HEK-hP2X7 cells.

    No full text
    <p>HEK-hP2X7 cells were loaded with 1 μM Fluo-4 for 30 minutes and calcium responses recorded at room temperature (26°C) using a fluorescent plate reader. ATP (1 mM) was injected and fluorescence recorded at 520 nm in the absence of inhibitors or in the presence of 1 mM probenecid (purple) or 10 μM A-438079 (blue). (B) Mean data from three independent calcium experiments. Sustained portion of the calcium response was measured and calculated as % of ATP control. Probenecid reduced response to 63±3.4% of control whereas A-438079 completely abolished the sustained calcium response. (C) Inward currents through wild-type human P2X7 receptors expressed in HEK-293 cells were recorded using whole cell patch clamp at room temperature. Membrane was clamped at −60 mV and ATP (1 mM in low divalent solution) was applied using a fast-flow delivery system. Black bars indicate ATP exposure (5 seconds). The initial ATP response was measured then the cell was exposed to probenecid for 2 minutes before re-challenge with ATP in the continued presence of probenecid.</p
    corecore