1,469 research outputs found

    The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana.

    Get PDF
    The interaction between xylan and cellulose microfibrils is important for secondary cell wall properties in vascular plants; however, the molecular arrangement of xylan in the cell wall and the nature of the molecular bonding between the polysaccharides are unknown. In dicots, the xylan backbone of β-(1,4)-linked xylosyl residues is decorated by occasional glucuronic acid, and approximately one-half of the xylosyl residues are O-acetylated at C-2 or C-3. We recently proposed that the even, periodic spacing of GlcA residues in the major domain of dicot xylan might allow the xylan backbone to fold as a twofold helical screw to facilitate alignment along, and stable interaction with, cellulose fibrils; however, such an interaction might be adversely impacted by random acetylation of the xylan backbone. Here, we investigated the arrangement of acetyl residues in Arabidopsis xylan using mass spectrometry and NMR. Alternate xylosyl residues along the backbone are acetylated. Using molecular dynamics simulation, we found that a twofold helical screw conformation of xylan is stable in interactions with both hydrophilic and hydrophobic cellulose faces. Tight docking of xylan on the hydrophilic faces is feasible only for xylan decorated on alternate residues and folded as a twofold helical screw. The findings suggest an explanation for the importance of acetylation for xylan-cellulose interactions, and also have implications for our understanding of cell wall molecular architecture and properties, and biological degradation by pathogens and fungi. They will also impact strategies to improve lignocellulose processing for biorefining and bioenergy.The work conducted by TT and NN was supported by a grant from the BBSRC: BB/G016240/1 BBSRC Sustainable Energy Centre Cell Wall Sugars Programme (BSBEC) to PD and DNB. The work of PD was supported by the European Community’s Seventh Framework Programme SUNLIBB (FP7/2007-2013) under the grant agreement #251132. The NMR facility infrastructure was supported by the BBSRC and the Wellcome Trust. TCFG thanks CNPq (Brazil) for a graduate fellowship (grant # 140978/2009-7). MSS thanks CEPROBIO (grant # 490022/2009- 0) and FAPESP for funding (grant #2013/08293-7).This is the accepted version of the following article: "Busse-Wicher, M; Gomes, T.C.F; Tryfona, T; Nikolovski, N; Stott, K; Grantham, N.J; Bolam, D.N; Skaf, M.S; Dupree, P. (2014) "The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a two-fold helical screw in the secondary plant cell wall of Arabidopsis thaliana." The Plant Journal. Accepted article [electronic] 10.1111/tpj.12575", which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/tpj.12575/abstrac

    Is the Atmosphere of the Ultra-hot Jupiter WASP-121 b Variable?

    Get PDF
    We present a comprehensive analysis of the Hubble Space Telescope observations of the atmosphere of WASP121 b, an ultra-hot Jupiter. After reducing the transit, eclipse, and phase-curve observations with a uniform methodology and addressing the biases from instrument systematics, sophisticated atmospheric retrievals are used to extract robust constraints on the thermal structure, chemistry, and cloud properties of the atmosphere. Our analysis shows that the observations are consistent with a strong thermal inversion beginning at ∼104 Pa on the dayside, solar to subsolar metallicity Z (i.e., -0.77 log 0.05 < < ( ) Z ), and supersolar C/O ratio (i.e., 0.59 < C/O < 0.87). More importantly, utilizing the high signal-to-noise ratio and repeated observations of the planet, we identify the following unambiguous time-varying signals in the data: (i) a shift of the putative hotspot offset between the two phase curves and (ii) varying spectral signatures in the transits and eclipses. By simulating the global dynamics of WASP-121 b's atmosphere at high resolution, we show that the identified signals are consistent with quasiperiodic weather patterns, hence atmospheric variability, with signatures at the level probed by the observations (∼5% to ∼10%) that change on a timescale of ∼5 planet days; in the simulations, the weather patterns arise from the formation and movement of storms and fronts, causing hot (as well as cold) patches of atmosphere to deform, separate, and mix in time

    A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOMicrobial aromatic catabolism offers a promising approach to convert lignin, a vast source of renewable carbon, into useful products. Aryl-O-demethylation is an essential biochemical reaction to ultimately catabolize coniferyl and sinapyl lignin-derived a9FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO2013/08293-72014/10448-12016/22956-7We acknowledge funding from NSF grants to J.L.D. (MCB-1715176), K.N.H. (CHE-1361104), and E.L.N. (DEB-1556541 and MCB-1615365) and BBSRC grants to J.E.M. (BB/P011918/1, BB/L001926/1 and a studentship to S.J.B.M.). G.T.B., M.M.M., C.W.J., M.F.C., E.L.N.,

    ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3*

    Get PDF
    We present the analysis of the hot-Jupiter KELT-7 b using transmission and emission spectroscopy from the Hubble Space Telescope, both taken with the Wide Field Camera 3. Our study uncovers a rich transmission spectrum that is consistent with a cloud-free atmosphere and suggests the presence of H_{2}O and H^{−}. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature–pressure profile, collision induced absorption, and H^{-}. KELT-7 b had also been studied with other space-based instruments and we explore the effects of introducing these additional data sets. Further observations with Hubble, or the next generation of space-based telescopes, are needed to allow for the optical opacity source in transmission to be confirmed and for molecular features to be disentangled in emission

    No Clear, Direct Evidence for Multiple Protoplanets Orbiting LkCa 15: LkCa 15 bcd are Likely Inner Disk Signals

    Get PDF
    Two studies utilizing sparse aperture-masking (SAM) interferometry and H-alpha differential imaging have reported multiple Jovian companions around the young solar-mass star, LkCa 15 (LkCa 15 bcd): the first claimed direct detection of infant, newly formed planets ("protoplanets"). We present new near-infrared direct imaging/spectroscopy from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) integral field spectrograph and multi-epoch thermal infrared imaging from Keck/NIRC2 of LkCa 15 at high Strehl ratios. These data provide the first direct imaging look at the same wavelengths and in the same locations where previous studies identified the LkCa 15 protoplanets, and thus offer the first decisive test of their existence. The data do not reveal these planets. Instead, we resolve extended emission tracing a dust disk with a brightness and location comparable to that claimed for LkCa 15 bcd. Forward-models attributing this signal to orbiting planets are inconsistent with the combined SCExAO/CHARIS and Keck/NIRC2 data. An inner disk provides a more compelling explanation for the SAM detections and perhaps also the claimed H-alpha detection of LkCa 15 b. We conclude that there is currently no clear, direct evidence for multiple protoplanets orbiting LkCa 15, although the system likely contains at least one unseen Jovian companion. To identify Jovian companions around LkCa 15 from future observations, the inner disk should be detected and its effect modeled, removed, and shown to be distinguishable from planets. Protoplanet candidates identified from similar systems should likewise be clearly distinguished from disk emission through modeling.NASA Senior Postdoctoral Fellowship; NASA/Keck grant [LK-2663-948181]; CONICYT-FONDECYT [1171246]; project CONICYT PAI/Concurso Nacional Insercion en la Academia, convocatoria 2015 [79150049]; JSPS KAKENHI [18H05442, 15H02063]; National Aeronautics and Space Administration; Subaru Time Allocation Committe; NASA/Keck Time Allocation CommitteThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; κλ &lt; 6.9 and −0.5 &lt; κ2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF
    Parton energy loss in the quark–gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb−1 of Pb+Pb data and 260 pb−1 of pp data, both at sNN=5.02 TeV, with the ATLAS detector. The process pp →γ+jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss

    Search for the Exclusive W Boson Hadronic Decays W±→π±γ , W±→K±γ and W±→ρ±γ with the ATLAS Detector

    Get PDF
    corecore