35 research outputs found
Activity and migratory flights of individual free-flying songbirds throughout the annual cycle:method and first case study
We describe a method and device ( 66 (max. 73) nocturnal migratory flights (29 flights in autumn and > 37, max. 44, in spring) adding up to a total of > 434 (max. 495) flight hours. Migratory flights lasted on average 6.6 h with maximum 15.9 h. These flights were aggregated into eight travel episodes (periods of 4-11 nights when flights took place on the majority of nights). Daytime resting levels were much higher during the winter period compared to breeding and final part of spring migration. Daytime resting showed peaks during days between successive nocturnal flights across Sahara, continental Africa and the Arabian Peninsula, indicating that the bird was mostly sleeping between these long migratory flights. Annual activity and flight data for free-living songbirds will open up many new research possibilities. Main topics that can be addressed are e.g. migratory flight performance (total flight investment, numbers and characteristics of flights), timing of stationary periods, activity patterns (resting/sleep, activity level) in different phases of the annual cycle and variability in the annual activity patterns between and within individuals
Stopover behaviour in migratory songbirds: timing, orientation and departures
Songbird migrants use stopovers between flight bouts to rest and refuel for the upcoming flights. Behaviours affecting where, when and how long to stay at stopover sites will affect how successful the overall migration will be, which has significant consequences for the overall fitness and mortality of the birds. The main purpose of this work was to investigate stopover behaviours in free-flying migrants to understand the effects of intrinsic (age and body condition) and environmental (weather) factors on the behaviours that guide birds as they depart from migratory stopovers. I studied some of our most common migratory songbirds using an automated radiotelemetry system at the Falsterbo peninsula, Sweden. Our results show that stopover duration is affected by fuel load and weather conditions, and that they differ between the migratory seasons. Furthermore, timing of departures on nocturnal flights appears primarily determined by ecological factors, and are to a large degree affected by the lengths of the nights. Birds with larger fuel stores departed before lean individuals, indicating that they prepared for a longer flight. We found that reverse movements during migration are slower, take place at lower latitudes and later in the night than movements in the expected migratory direction, and are most common in juvenile or lean individuals. Route choice across the Baltic Sea after departure from Falsterbo is largely affected by wind directions. In cue conflict experiments between magnetic compass and celestial cues at sunset we found no recalibration of the magnetic compass. We suggest that access to stars during calibration is necessary for all compasses to be calibrated when the birds depart for a night’s flight. Comparisons between departure directions and directions of birds in climbing and level flight revealed that birds adjust their directions after take-off, once at cruising altitudes. Winds were the primary factor affecting flight duration for the first 50 km of flight after departure. Interestingly, cloud coverage affected flight duration negatively, while fuel load affected it positively. Collectively, this work shows how intrinsic and environmental factors modulate stopover behaviours in migratory songbirds, with essential implications on the birds’ migratory schedules
A New View on an Old Debate: Type of Cue-Conflict Manipulation and Availability of Stars Can Explain the Discrepancies between Cue-Calibration Experiments with Migratory Songbirds.
Migratory birds use multiple compass systems for orientation, including a magnetic, star and sun/polarized light compass. To keep these compasses in register, birds have to regularly update them with respect to a common reference. However, cue-conflict studies have revealed contradictory results on the compass hierarchy, favoring either celestial or magnetic compass cues as the primary calibration reference. Both the geomagnetic field and polarized light cues present at sunrise and sunset have been shown to play a role in compass cue integration, and evidence suggests that polarized light cues at sunrise and sunset may provide the primary calibration reference for the other compass systems. We tested whether migratory garden warblers recalibrated their compasses when they were exposed to the natural celestial cues at sunset in a shifted magnetic field, which are conditions that have been shown to be necessary for the use of a compass reference based on polarized light cues. We released the birds on the same evening under a starry sky and followed them by radio tracking. We found no evidence of compass recalibration, even though the birds had a full view of polarized light cues near the horizon at sunset during the cue-conflict exposure. Based on a meta-analysis of the available literature, we propose an extended unifying theory on compass cue hierarchy used by migratory birds to calibrate the different compasses. According to this scheme, birds recalibrate their magnetic compass by sunrise/sunset polarized light cues, provided they have access to the vertically aligned band of maximum polarization near the horizon and a view of landmarks. Once the stars appear in the sky, the birds then recalibrate the star compass with respect of the recalibrated magnetic compass. If sunrise and sunset information can be viewed from the same location, the birds average the information to get a true geographic reference. If polarized light information is not available near the horizon at sunrise or sunset, the birds temporarily transfer the previously calibrated magnetic compass information to the available celestial compasses. We conclude that the type of cue-conflict manipulation and the availability of stars can explain the discrepancies between studies
Track directions and vanishing bearings
Data collected in the field by using radiotelemetry and radar. For information on calculations of directions see the manuscript
Data from: Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study
In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes
Causes and characteristics of reverse bird migration : An analysis based on radar, radio tracking and ringing at Falsterbo, Sweden
That birds migrate in the reverse direction of the expected is a phenomenon of regular occurrence which has been observed at many sites. Here we use three different methods; tracking radar, radiotelemetry and ringing, to characterize the flights of these reverse migrants and investigate possible causes of reverse migration of nocturnally migrating passerines during autumn migration at Falsterbo peninsula, Sweden. Using these different methods we investigated both internal factors, such as age and fuel load, and external factors such as weather variables, competition and predation risk. Birds flying in the reverse direction were more likely to be lean and to be juveniles. Reverse migration was also more common with overcast skies and winds with north and east components. We did not find any effect of temperature, visibility, number of migrating sparrowhawks, or the total number of ringed birds at the site on the day of departure. We found that reverse migration is characterized by slower flight speeds (airspeed) at high altitudes and that it takes place later in the night than forward migration
Nocturnal migratory songbirds adjust their travelling direction aloft: evidence from a radiotelemetry and radar study.
In order to fully understand the orientation behaviour of migrating birds, it is important to understand when birds set their travel direction. Departure directions of migratory passerines leaving stopover sites are often assumed to reflect the birds' intended travel directions, but this assumption has not been critically tested. We used data from an automated radiotelemetry system and a tracking radar at Falsterbo peninsula, Sweden, to compare the initial orientation of departing songbirds (recorded by radiotelemetry) with the orientation of songbird migrants in climbing and level flight (recorded by radar). We found that the track directions of birds at high altitudes and in level flight were more concentrated than the directions of departing birds and birds in climbing flight, which indicates that the birds adjust their travelling direction once aloft. This was further supported by a wide scatter of vanishing bearings in a subsample of radio-tracked birds that later passed an offshore radio receiver station 50 km southeast of Falsterbo. Track directions seemed to be more affected by winds in climbing compared with level flights, which may be explained by birds not starting to partially compensate for wind drift until they have reached cruising altitudes
Ringing recovery data
Short term ringing recoveries of migrating passerines ringed at Falsterbo Bird Observatory, southern Sweden
Radar data
Tracking radar data of nocturnally migrating passerines during autumn migration in Falsterbo, southern Sweden