95 research outputs found

    Predictive Modeling of Critical Temperatures in Superconducting Materials

    Get PDF
    n this study, we have investigated quantitative relationships between critical temperaturesof superconductive inorganic materials and the basic physicochemical attributes of these materials(also called quantitative structure-property relationships). We demonstrated that one of the mostrecent studies (titled A data-driven statistical model for predicting the critical temperature of asuperconductor” and published in Computational Materials Science by K. Hamidieh in 2018) reportson models that were based on the dataset that contains 27% of duplicate entries. We aimed todeliver stable models for a properly cleaned dataset using the same modeling techniques (multiplelinear regression, MLR, and gradient boosting decision trees, XGBoost). The predictive ability ofour best XGBoost model (R2 = 0.924, RMSE = 9.336 using 10-fold cross-validation) is comparableto the XGBoost model by the author of the initial dataset (R2 = 0.920 and RMSE = 9.5 K in ten-foldcross-validation). At the same time, our best model is based on less sophisticated parameters, whichallows one to make more accurate interpretations while maintaining a generalizable model. Inparticular, we found that the highest relative influence is attributed to variables that represent thethermal conductivity of materials. In addition to MLR and XGBoost, we explored the potential ofother machine learning techniques (NN, neural networks and RF, random forest

    Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available

    Get PDF
    The number and variety of engineered nanoparticles have been growing exponentially. Since the experimental evaluation of nanoparticles causing public health concerns is expensive and time consuming, efficient computational tools are amongst the most suitable approaches to identifying potential negative impacts, to the human health and the environment, of new nanomaterials before their production. However, developing computational models complimentary to experiments is impossible without incorporating consistent and high quality experimental data. Although there are limited available data in the literature, one may apply read-across techniques that seem to be an attractive and pragmatic alternative way of predicting missing physico-chemical or toxicological data. Unfortunately, the existing methods of read-across are strongly dependent on the expert's knowledge. In consequence, the results of estimations may vary dependently on personal experience of expert conducting the study and as such cannot guarantee the reproducibility of their results. Therefore, it is essential to develop novel read-across algorithm(s) that will provide reliable predictions of the missing data without the need to for additional experiments. We proposed a novel quantitative read-across approach for nanomaterials (Nano-QRA) that addresses and overcomes a basic limitation of existing methods. It is based on: one-point-slope, two-point formula, or the equation of a plane passing through three points. The proposed Nano-QRA approach is a simple and effective algorithm for filling data gaps in quantitative manner providing reliable predictions of the missing data. © The Royal Society of Chemistry

    Advancement of predictive modeling of zeta potentials (ζ) in metal oxide nanoparticles with correlation intensity index (CII)

    Get PDF
    It was expected that index of the ideality of correlation (IIC) and correlation intensity index (CII) could be used as possible tools to improve the predictive power of the quantitative model for zeta potential of nanoparticles. In this paper, we test how the statistical quality of quantitative structure-activity models for zeta potentials (ζ, a common measurement that reflects surface charge and stability of nanomaterial) could be improved with the use of these two indexes. Our hypothesis was tested using the benchmark data set that consists of 87 measurements of zeta potentials in water. We used quasi-SMILES molecular representation to take into consideration the size of nanoparticles in water and calculated optimal descriptors and predictive models based on the Monte Carlo method. We observed that the models developed with utilization of CII are statistically more reliable than models obtained with the IIC. However, the described approach gives an improvement of the statistical quality of these models for the external validation sets to the detriment for the training sets. Nevertheless, this circumstance is rather an advantage than a disadvantage

    Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology

    Get PDF
    Nanotechnology and the production of nanomaterials have been expanding rapidly in recent years. Since many types of engineered nanoparticles are suspected to be toxic to living organisms and to have a negative impact on the environment, the process of designing new nanoparticles and their applications must be accompanied by a thorough exposure risk analysis. (Quantitative) Structure-Activity Relationship ([Q]SAR) modelling creates promising options among the available methods for the risk assessment. These in silico models can be used to predict a variety of properties, including the toxicity of newly designed nanoparticles. However, (Q)SAR models must be appropriately validated to ensure the clarity, consistency and reliability of predictions. This paper is a joint initiative from recently completed European research projects focused on developing (Q)SAR methodology for nanomaterials. The aim was to interpret and expand the guidance for the well-known “OECD Principles for the Validation, for Regulatory Purposes, of (Q)SAR Models”, with reference to nano-(Q)SAR, and present our opinions on the criteria to be fulfilled for models developed for nanoparticles

    Modeling of Interactions between the Zebrafish Hatching Enzyme ZHE1 and A Series of Metal Oxide Nanoparticles: Nano-QSAR and Causal Analysis of Inactivation Mechanisms

    No full text
    The quantitative relationships between the activity of zebrafish ZHE1 enzyme and a series of experimental and physicochemical features of 24 metal oxide nanoparticles were revealed. Vital characteristics of the nanoparticles’ structure were reflected using both experimental and theoretical descriptors. The developed quantitative structure–activity relationship model for nanoparticles (nano-QSAR) was capable of predicting the enzyme inactivation based on four descriptors: the hydrodynamic radius, mass density, the Wigner–Seitz radius, and the covalent index. The nano-QSAR model was calculated using the non-linear regression tree M5P algorithm. The developed model is characterized by high robustness R2bagging = 0.90 and external predictivity Q2EXT = 0.93. This model is in agreement with modern theories of aquatic toxicity. Dissolution and size-dependent characteristics are among the key driving forces for enzyme inactivation. It was proven that ZnO, CuO, Cr2O3, and NiO nanoparticles demonstrated strong inhibitory effects because of their solubility. The proposed approach could be used as a non-experimental alternative to animal testing. Additionally, methods of causal discovery were applied to shed light on the mechanisms and modes of action

    Predictive Modeling of Critical Temperatures in Superconducting Materials

    No full text
    In this study, we have investigated quantitative relationships between critical temperatures of superconductive inorganic materials and the basic physicochemical attributes of these materials (also called quantitative structure-property relationships). We demonstrated that one of the most recent studies (titled "A data-driven statistical model for predicting the critical temperature of a superconductor” and published in Computational Materials Science by K. Hamidieh in 2018) reports on models that were based on the dataset that contains 27% of duplicate entries. We aimed to deliver stable models for a properly cleaned dataset using the same modeling techniques (multiple linear regression, MLR, and gradient boosting decision trees, XGBoost). The predictive ability of our best XGBoost model (R2 = 0.924, RMSE = 9.336 using 10-fold cross-validation) is comparable to the XGBoost model by the author of the initial dataset (R2 = 0.920 and RMSE = 9.5 K in ten-fold cross-validation). At the same time, our best model is based on less sophisticated parameters, which allows one to make more accurate interpretations while maintaining a generalizable model. In particular, we found that the highest relative influence is attributed to variables that represent the thermal conductivity of materials. In addition to MLR and XGBoost, we explored the potential of other machine learning techniques (NN, neural networks and RF, random forests)

    Predictive Modeling of Critical Temperatures in Superconducting Materials

    No full text
    In this study, we have investigated quantitative relationships between critical temperatures of superconductive inorganic materials and the basic physicochemical attributes of these materials (also called quantitative structure-property relationships). We demonstrated that one of the most recent studies (titled "A data-driven statistical model for predicting the critical temperature of a superconductor” and published in Computational Materials Science by K. Hamidieh in 2018) reports on models that were based on the dataset that contains 27% of duplicate entries. We aimed to deliver stable models for a properly cleaned dataset using the same modeling techniques (multiple linear regression, MLR, and gradient boosting decision trees, XGBoost). The predictive ability of our best XGBoost model (R2 = 0.924, RMSE = 9.336 using 10-fold cross-validation) is comparable to the XGBoost model by the author of the initial dataset (R2 = 0.920 and RMSE = 9.5 K in ten-fold cross-validation). At the same time, our best model is based on less sophisticated parameters, which allows one to make more accurate interpretations while maintaining a generalizable model. In particular, we found that the highest relative influence is attributed to variables that represent the thermal conductivity of materials. In addition to MLR and XGBoost, we explored the potential of other machine learning techniques (NN, neural networks and RF, random forests).</jats:p

    Review of Current and Emerging Approaches for Quantitative Nanostructure-Activity Relationship Modeling

    Full text link
    Quantitative structure-activity/property relationships (QSAR/QSPR) approaches that have been applied with success in a number of studies are currently used as indispensable tools in the computational analysis of nanomaterials. Evolution of nano-QSAR methodology to the ranks of novel field of knowledge has resulted in the development of new so-called “nano-descriptors” and extension of the statistical approaches domain. This brief review focuses on the critical analysis of advantages and disadvantages of existing methods of nanoparticles' representation and their analysis in framework of structure-activity relationships. It summarizes recent QSAR/QSPR studies on inorganic nanomaterials. Here the authors describe practices for the QSAR modeling of inorganic nanoparticles, existing datasets, and discuss applicable descriptors and future perspectives of this field. About 50 different (Q)SAR/SPR models for inorganic nanomaterials have been developed during the past 5 years. An analysis of these peer reviewed publications shows that the most popular property of nanoparticles modeled via QSAR is their toxicity towards different bacteria, cell lines, and microorganisms. It has been clearly shown how nano-QSAR can contribute to the elucidation of toxicity mechanisms and different physical properties of inorganic nanomaterials. </jats:p
    corecore