285 research outputs found

    Identifying COPD in routinely collected electronic health records: a systematic scoping review

    Get PDF
    Although routinely collected electronic health records (EHRs) are widely used to examine outcomes related to COPD, consensus regarding the identification of cases from electronic healthcare databases is lacking. We systematically examine and summarise approaches from the recent literature. MEDLINE via EBSCOhost was searched for COPD-related studies using EHRs published from January 1, 2018 to November 30, 2019. Data were extracted relating to the case definition of COPD and determination of COPD severity and phenotypes. From 185 eligible studies, we found widespread variation in the definitions used to identify people with COPD in terms of code sets used (with 20 different code sets in use based on the ICD-10 classification alone) and requirement of additional criteria (relating to age (n=139), medication (n=31), multiplicity of events (n=21), spirometry (n=19) and smoking status (n=9)). Only seven studies used a case definition which had been validated against a reference standard in the same dataset. Various proxies of disease severity were used since spirometry results and patient-reported outcomes were not often available. To enable the research community to draw reliable insights from EHRs and aid comparability between studies, clear reporting and greater consistency of the definitions used to identify COPD and related outcome measures is key

    Small Drusen and Age-Related Macular Degeneration: The Beaver Dam Eye Study

    Get PDF
    We tested the hypothesis that large areas of small hard drusen (diameter \u3c63 μm) and intermediate drusen (diameter 63-124 μm) are associated with the incidence of age-related macular degeneration (AMD). Eyes of 3344 older adults with at least 2 consecutive visits spaced 5 years apart over a 20-year period were included. A 6-level severity scale including no drusen, 4 levels of increasing area (from minimal (\u3c2596 μm2) to large (\u3e9086 μm2)) of only small hard drusen, and intermediate drusen was used. The 5-year incidence of AMD was 3% in eyes at the start of the interval with no, minimal, small, and moderate areas of only small drusen and 5% and 25% for eyes with large area of only small drusen and intermediate drusen, respectively. Compared to eyes with a moderate area of small drusen, the odds ratio (OR) of developing AMD in eyes with a large area of only small drusen was 1.8 (p \u3c 0.001). Compared to eyes with large area of only small drusen, eyes with intermediate drusen had an OR of 5.5 (p \u3c 0.001) of developing AMD. Our results are consistent with our hypothesis that large areas of only small drusen are associated with the incidence of AMD

    Isolation and Characterisation of Genes Encoding Malate Synthesis and Transport Determinants in the Aluminum-Tolerant Australian Weeping-Grass (\u3cem\u3eMicrolaena Stipoides\u3c/em\u3e)

    Get PDF
    Acid soils cover some 40% of the Earth’s arable land where they represent a major limitation to plant production. Plant growth on acid soils is primarily limited due to aluminium (Al) solubilized by acidity into toxic Al3+ cations which will inhibit root growth resulting in poor uptake of water and nutrients. Many important pasture species lack sufficient Al tolerance within their germplasm to allow effective breeding for this character

    Isolation and Characterisation of Genes Encoding Ice Recrystallisation Inhibition Proteins (IRIPs) in the Cryophilic Antarctic Hair-Grass (\u3ci\u3eDeschampsia Antarctica\u3c/i\u3e) and the Temperate Perennial Ryegrass (\u3ci\u3eLolium Perenne\u3c/i\u3e)

    Get PDF
    Antarctic hairgrass (D. antarctica Desv.), the only grass species indigenous to Antarctica, has a well developed tolerance of freezing, strongly induced by cold-acclimation. In response to low temperatures D. antarctica exhibits recrystallisation inhibition (RI) activity, localised to the apoplasm, that prevents further growth of ice crystals following freezing

    CRISPR screens identify gene targets at breast cancer risk loci

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified > 200 loci associated with breast cancer risk. The majority of candidate causal variants are in noncoding regions and likely modulate cancer risk by regulating gene expression. However, pinpointing the exact target of the association, and identifying the phenotype it mediates, is a major challenge in the interpretation and translation of GWAS. Results: Here, we show that pooled CRISPR screens are highly effective at identifying GWAS target genes and defining the cancer phenotypes they mediate. Following CRISPR mediated gene activation or suppression, we measure proliferation in 2D, 3D, and in immune-deficient mice, as well as the effect on DNA repair. We perform 60 CRISPR screens and identify 20 genes predicted with high confidence to be GWAS targets that promote cancer by driving proliferation or modulating the DNA damage response in breast cells. We validate the regulation of a subset of these genes by breast cancer risk variants. Conclusions: We demonstrate that phenotypic CRISPR screens can accurately pinpoint the gene target of a risk locus. In addition to defining gene targets of risk loci associated with increased breast cancer risk, we provide a platform for identifying gene targets and phenotypes mediated by risk variants.Natasha K. Tuano, Jonathan Beesley, Murray Manning, Wei Shi, Laura Perlaza, Jimenez, Luis F. Malaver, Ortega, Jacob M. Paynter, Debra Black, Andrew Civitarese, Karen McCue, Aaron Hatzipantelis, Kristine Hillman, Susanne Kaufmann, Haran Sivakumaran, Jose M. Polo, Roger R. Reddel, Vimla Band, Juliet D. French, Stacey L. Edwards, David R. Powell, Georgia Chenevix, Trench, and Joseph Rosenblu

    A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration

    Get PDF
    Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10−109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10−9) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number

    COL4A2 is associated with lacunar ischemic stroke and deep ICH: Meta-analyses among 21,500 cases and 40,600 controls

    Get PDF
    Objective: To determine whether common variants in familial cerebral small vessel disease (SVD) genes confer risk of sporadic cerebral SVD. Methods: We meta-analyzed genotype data from individuals of European ancestry to determine associations of common single nucleotide polymorphisms (SNPs) in 6 familial cerebral SVD genes (COL4A1, COL4A2, NOTCH3, HTRA1, TREX1, and CECR1) with intracerebral hemorrhage (ICH) (deep, lobar, all; 1,878 cases, 2,830 controls) and ischemic stroke (IS) (lacunar, cardioembolic, large vessel disease, all; 19,569 cases, 37,853 controls). We applied data quality filters and set statistical significance thresholds accounting for linkage disequilibrium and multiple testing. Results: A locus in COL4A2 was associated (significance threshold p , 3.5 3 1024) with both lacunar IS (lead SNP rs9515201: odds ratio [OR] 1.17, 95%confidence interval [CI] 1.11-1.24, p 56.62 31028) and deep ICH (lead SNP rs4771674: OR 1.28, 95%CI 1.13-1.44, p 55.76 3 1025). A SNP in HTRA1 was associated (significance threshold p , 5.5 3 1024) with lacunar IS (rs79043147: OR 1.23, 95%CI 1.10-1.37, p 5 1.90 3 1024) and less robustly with deep ICH. There was no clear evidence for association of common variants in either COL4A2 or HTRA1 with non-SVD strokes or in any of the other genes with any stroke phenotype
    corecore