68 research outputs found
Three-dose versus four-dose primary schedules for tick-borne encephalitis (TBE) vaccine FSME-immun for those aged 50 years or older : A single-centre, open-label, randomized controlled trial
Background: TBE vaccination failures among those past middle age have raised concern about immune response declining with age. We investigated immunogenicity of the TBE-vaccine FSME-Immun among those aged 50+ years using the standard three-dose primary series and alternative four-dose schedules. Methods: In this single-centre, open-label, randomized controlled trial, 200 TBE-naive Swedish adults were given primary TBE vaccination with FSME-Immun. Those aged 50+ years (n = 150) were randomized to receive the standard three-dose (days 0-30-360) or one of two four-dose series (0-7-21-360; 0-30- 90-360). For participants < 50 years (n = 50) the standard three-dose schedule was used. Titres of neu-tralizing antibodies were determined on days 0, 60, 120, 360, and 400. The main outcome was the log titre of TBE virus-specific neutralizing antibodies on day 400. Results: The three-dose schedule yielded lower antibody titres among those aged 50+ years than the younger participants on day 400 (geometric mean titre 41 versus 74, p < 0.05). The older group showed higher titres for the four-dose 0-7-21-360 than the standard three-dose schedule both on day 400 (103 versus 41, p < 0.01; primary end point) and at the other testing points (days 60,120, 360). Using the other four-dose schedule (0-30-90-360), no such difference was observed on day 400 (63 versus 41, NS). Conclusion: Immune response to the TBE vaccine declined with age. A four-dose schedule (0-7-21-360) may benefit those aged 50 years or older. This study is registered at ClinicalTrials.gov, NCT01361776. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Peer reviewe
Dengue Fever in Travelers to the Tropics, 1998 and 1999
Dengue fever (DF) has become common in western travelers to the tropics. To improve the basis for travel advice, risk factors and dengue manifestations were assessed in 107 Swedish patients for whom DF was diagnosed after return from travel in 1998 and 1999. Patient data were compared with data on a sample of all Swedish travelers to dengue-endemic countries in the same years. Only three of the patients had received pretravel advice concerning DF from their physicians. Hemorrhagic manifestations were common (21 of 74 patients) but caused no deaths. Risk factors for a DF diagnosis were travel to the Malay Peninsula (odds ratio [OR] 4.95; confidence interval [CI] 2.92 to 8.46), age 15–29 years (OR 3.03; CI 1.87 to 4.92), and travel duration >25 days (OR 8.75; CI 4.79 to 16.06). Pretravel advice should be given to all travelers to DF-endemic areas, but young persons traveling to southern and Southeast Asia for >3 weeks (who constituted 31% of the patients in our study) may be more likely to benefit by adhering to it
Tickborne Encephalitis Virus, Norway and Denmark
Serum from 2 Norwegians with tickborne encephalitis (TBE) (1 of whom was infected in Denmark) and 810 Norwegian ticks were tested for TBE virus (TBEV) RNA by reverse transcription–polymerase chain reaction. Sequencing and phylogenetic analysis were performed. This is the first genome detection of TBEV in serum from Norwegian patients
A Model System for In Vitro Studies of Bank Vole Borne Viruses
The bank vole (Myodes glareolus) is a common small mammal in Europe and a natural host for several important emerging zoonotic viruses, e.g. Puumala hantavirus (PUUV) that causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses are known to interfere with several signaling pathways in infected human cells, and HFRS is considered an immune-mediated disease. There is no in vitro-model available for infectious experiments in bank vole cells, nor tools for analyses of bank vole immune activation and responses. Consequently, it is not known if there are any differences in the regulation of virus induced responses in humans compared to natural hosts during infection. We here present an in vitro-model for studies of bank vole borne viruses and their interactions with natural host cell innate immune responses. Bank vole embryonic fibroblasts (VEFs) were isolated and shown to be susceptible for PUUV-infection, including a wild-type PUUV strain (only passaged in bank voles). The significance of VEFs as a model system for bank vole associated viruses was further established by infection studies showing that these cells are also susceptible to tick borne encephalitis, cowpox and Ljungan virus. The genes encoding bank vole IFN-β and Mx2 were partially sequenced and protocols for semi-quantitative RT-PCR were developed. Interestingly, PUUV did not induce an increased IFN-β or Mx2 mRNA expression. Corresponding infections with CPXV and LV induced IFN-β but not Mx2, while TBEV induced both IFN-β and Mx2
The Three Subtypes of Tick-Borne Encephalitis Virus Induce Encephalitis in a Natural Host, the Bank Vole (Myodes glareolus)
Tick-borne encephalitis virus (TBEV) infects bank voles (Myodes glareolus) in nature, but the relevance of rodents for TBEV transmission and maintenance is unclear. We infected colonized bank voles subcutaneously to study and compare the infection kinetics, acute infection, and potential viral persistence of the three known TBEV subtypes: European (TBEV-Eur), Siberian (TBEV-Sib) and Far Eastern (TBEV-FE). All strains representing the three subtypes were infective and highly neurotropic. They induced (meningo)encephalitis in some of the animals, however most of the cases did not present with apparent clinical symptoms. TBEV-RNA was cleared significantly slower from the brain as compared to other organs studied. Supporting our earlier findings in natural rodent populations, TBEV-RNA could be detected in the brain for up to 168 days post infection, but we could not demonstrate infectivity by cell culture isolation. Throughout all time points post infection, RNA of the TBEV-FE was detected significantly more often than RNA of the other two strains in all organs studied. TBEV-FE also induced prolonged viremia, indicating distinctive kinetics in rodents in comparison to the other two subtypes. This study shows that bank voles can develop a neuroinvasive TBEV infection with persistence of viral RNA in brain, and mount an anti-TBEV IgG response. The findings also provide further evidence that bank voles can serve as sentinels for TBEV endemicity.Peer reviewe
Multi-laboratory evaluation of ReaScan TBE IgM rapid test, 2016 to 2017
Tick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection. Aim: In this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting. Methods: Patient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia, Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients' diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory's conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein-Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed. Results: Compared with each laboratory's conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems. Conclusion: Regarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it can provide preliminary results in a laboratory or point of care setting.Peer reviewe
Characterization of Hemorrhagic Fever with Renal Syndrome Caused by Hantaviruses, Estonia
Thirty cases of hemorrhagic fever with renal syndrome (HFRS) due to Puumala virus (PUUV), Saaremaa virus (SAAV), and Dobrava virus infection were confirmed in Estonia. Except for the levels of serum creatinine, no remarkable differences were found in the clinical course of HFRS caused by PUUV and SAAV
Оптимизация энергопотребления электроплавильных печей с использованием технологий предварительного подогрева шихты
Материалы ХI Международной науч.-техн. конф. студентов, магистрантов и аспирантов [28-29 апреля 2011 г., г. Гомель]. - Гомель, 2011
Serologic Analysis of Returned Travelers with Fever, Sweden
We studied 1,432 febrile travelers from Sweden who had returned from malaria-endemic areas during March 2005–March 2008. In 383 patients, paired serum samples were blindly analyzed for influenza and 7 other agents. For 21% of 115 patients with fever of unknown origin, serologic analysis showed that influenza was the major cause
- …