14 research outputs found

    Introduction and establishment of fluoroquinolone-resistant Shigella sonnei into Bhutan.

    Get PDF
    Shigella sonnei is a major contributor to the global burden of diarrhoeal disease, generally associated with dysenteric diarrhoea in developed countries but also emerging in developing countries. The reason for the recent success of S. sonnei is unknown, but is likely catalysed by its ability to acquire resistance against multiple antimicrobials. Between 2011 and 2013, S. sonnei exhibiting resistance to fluoroquinolones, the first-line treatment recommended for shigellosis, emerged in Bhutan. Aiming to reconstruct the introduction and establishment of fluoroquinolone-resistant S. sonnei populations in Bhutan, we performed whole-genome sequencing on 71 S. sonnei samples isolated in Bhutan between 2011 and 2013.We found that these strains represented an expansion of a clade within the previously described lineage III, found specifically in Central Asia. Temporal phylogenetic reconstruction demonstrated that all of the sequenced Bhutanese S. sonnei diverged from a single ancestor that was introduced into Bhutan around 2006. Our data additionally predicted that fluoroquinolone resistance, conferred by mutations in gyrA and parC, arose prior to the introduction of the founder strain into Bhutan. Once established in Bhutan, these S. sonnei had access to a broad gene pool, as indicated by the acquisition of extended-spectrum ÎČ-lactamase-encoding plasmids and genes encoding type IV pili. The data presented here outline a model for the introduction and maintenance of fluoroquinolone-resistant S. sonnei in a new setting. Given the current circulation of fluoroquinolone-resistant S. sonnei in Asia, we speculate that this pattern of introduction is being recapitulated across the region and beyond

    Incidence of Campylobacter concisus and C. ureolyticus in traveler’s diarrhea cases and asymptomatic controls in Nepal and Thailand

    No full text
    Abstract Background Campylobacter concisus and C. ureolyticus have emerged in recent years as being associated with acute and prolonged gastroenteritis and implicated in the development of inflammatory bowel diseases. However, there are limited data on the prevalence of these microorganisms in Southeast Asia. In this study, 214 pathogen-negative stool samples after laboratory examination for common enteric pathogens to include C. jejuni and C. coli by culture from two case–control traveler’s diarrhea (TD) studies conducted in Thailand (cases = 26; controls = 30) and Nepal (cases = 83; controls = 75) respectively were assayed by PCR for the detection of Campylobacter 16S rRNA and two specific heat shock protein genes specific for C. concisus (cpn60) and C. ureolyticus (Hsp60) respectively. Results Campylobacter 16S rRNA was detected in 28.5% (61/214) of the pathogen-negative TD stool samples (CIWEC Travel Medicine Clinic, Kathmandu, Nepal: cases = 36, control = 14; Bamrungrad International Hospital, Bangkok, Thailand: cases = 9, controls = 2). C. consisus was identified significantly more often in TD cases in Nepal (28.9%; 24/83) as compared to controls (4%; 3/75) (OR = 9.76; 95% CI 2.80–34.02; P = 0.0003) while C. consisus was detected in only two cases (2/26; 7.7%) and none of the controls stool samples from Thailand. C. ureolyticus was detected in four cases (4.8%; 4/83) and four controls (5.3%; 4/75) and in one case (3.8%; 1/26) and one control (3.1%; 1/30) from Nepal and Thailand respectively. C. jejuni and C. coli were isolated in 18.3 and 3.4% of the cases and in 4.0 and 1.4% of the controls in stool samples from both Thailand and Nepal respectively while C. concisus nor C. ureolyticus were not tested for in these samples. Conclusion These findings suggest that C. concisus potentially is a pathogen associated with TD in Nepal. To our knowledge, this is the first report of C. concisus and C. ureolyticus detected from traveler’s diarrhea cases from travelers to Nepal and Thailand

    Description of novel capsule biosynthesis loci of Campylobacter jejuni clinical isolates from South and South-East Asia.

    No full text
    Campylobacter jejuni is a major cause of bacterial diarrhea worldwide and associated with numerous sequela, including Guillain-Barré Syndrome, inflammatory bowel disease, reactive arthritis, and irritable bowel syndrome. C. jejuni is unusual for an intestinal pathogen in its ability to coat its surface with a polysaccharide capsule (CPS). The genes responsible for the biosynthesis of the phase variable CPS is located in the hypervariable region of C. jejuni genome which has been used to develop multiplex PCR to classify CPS types based on the Penner serotypes. However, there still are non-typable CPS C. jejuni by the current multiplex PCR scheme. The application of the next generation sequencing and whole genome analysis software were used for the identification of novel capsule biosynthesis of C. jejuni isolates. Unique PCR primers were designed to identify these new capsule biosynthesis loci. The designed primers sets were combined in a new multiplex mix called epsilon. The unique sequences provide an additional information of the biosynthesis loci responsible for some of the common CPS sugars/residues such as heptose, deoxtyheptose and MeOPN among C. jejuni in this new group of CPS multiplex assay. This new primer complements the current C. jejuni multiplex capsule typing system and will help in identifying previously untypeable capsule locus of C. jejuni isolates

    Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014–2015

    No full text
    We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, ÎČ-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options

    Molecular characterization and PCR-based replicon typing of multidrug resistant Shigella sonnei isolates from an outbreak in Thimphu, Bhutan

    Get PDF
    BACKGROUND: Shigella species are an important cause of diarrhea in developing countries. These bacteria normally acquire their antibiotic resistance via several different mobile genetic elements including plasmids, transposons, and integrons involving gene cassettes. During a diarrhea surveillance study in Thimphu, Bhutan in June and July, 2011, Shigella sonnei were isolated more frequently than expected. This study describes the antibiotic resistance of these S. sonnei isolates. METHODS: A total of 29 S. sonnei isolates from Thimphu, Bhutan was characterized for antimicrobial susceptibility by disc diffusion assay and minimum inhibitory concentration (MIC) assay. All isolates were tested by pulsed-field gel electrophoresis (PFGE) with restriction enzyme XbaI and were tested for plasmid. The plasmid patterns and the PFGE patterns were analyzed by Bionumerics software. DNA sequencing was performed on amplified products for gyraseA gene and class 1 and class 2 integrons. S. sonnei isolates were classified for incompatibility of plasmids by PCR-based replicon typing (PBRT). RESULTS: These S. sonnei were resistant to multiple drugs like ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, streptomycin, and tetracycline but susceptible to azithromycin. All isolates had class 2 integrons dfrA1, sat1 and aadA1 genes. Two point mutations in Gyrase A subunit at position Ser83Leu and Asp87Gly were detected in these quinolone resistant isolates. The plasmid and PFGE patterns of S. sonnei isolates suggested a clonal relationship of the isolates. All isolates carried common ColE plasmid. ColE plasmid co-resided with B/O plasmid (nine isolates) or I1 plasmid (one isolate). CONCLUSIONS: The characteristics of 29 S. sonnei isolates from Thimphu, Bhutan in June and July, 2011 are identical in PFGE, plasmid and resistance pattern. This study suggests that these recent S. sonnei isolates are clonally related and multidrug-resistant

    Extended-spectrum ÎČ-lactamase prevalence and virulence factor characterization of enterotoxigenic Escherichia coli responsible for acute diarrhea in Nepal from 2001 to 2016

    No full text
    Abstract Background Multidrug-resistant (MDR) Gram-negative bacterial species are an increasingly dangerous public health threat, and are now endemic in many areas of South Asia. However, there are a lack of comprehensive data from many countries in this region determining historic and current MDR prevalence. Enterotoxigenic Escherichia coli (ETEC) is a leading cause of both acute infant diarrhea and traveler’s diarrhea in Nepal. The MDR prevalence and associated resistance mechanisms of ETEC isolates responsible for enteric infections in Nepal are largely unknown. Methods A total of 265 ETEC isolates were obtained from acute diarrheal samples (263/265) or patient control samples (2/265) at traveler’s clinics or regional hospitals in Nepal from 2001 to 2016. Isolates were screened for antibiotic resistance, to include extended spectrum beta-lactamase (ESBL) production, via the Microscan Automated Microbiology System. ETEC virulence factors, specifically enterotoxins and colonization factors (CFs), were detected using multiplex PCR, and prevalence in the total isolate population was compared to ESBL-positive isolates. ESBL-positive isolates were assessed using multiplex PCR for genetic markers potentially responsible for observed resistance. Results A total of 118/265 (44.5%) ETEC isolates demonstrated resistance to ≄2 antibiotics. ESBL-positive phenotypes were detected in 40/265 isolates, with isolates from 2008, 2013, 2014, and 2016 demonstrating ESBL prevalence rates of 1.5, 34.5, 31.2, and 35.0% respectively. No difference was observed in overall enterotoxin characterization between the total ETEC and ESBL-positive populations. The CFs CS2 (13.6%), CS3 (25.3%), CS6 (30.2%), and CS21 (62.6%) were the most prevalent in the total ETEC population. The ESBL-positive ETEC isolates exhibited a higher association trend with the CFs CS2 (37.5%), CS3 (35%), CS6 (42.5%), and CS21 (67.5%). The primary ESBL gene identified was bla CTX-M-15 (80%), followed by bla SHV-12 (20%) and bla CTX-M-14 (2.5%). The beta-lactamase genes bla TEM-1 (40%) and bla CMY-2 (2.5%) were also identified. It was determined that 42.5% of the ESBL-positive isolates carried multiple resistance genes. Conclusion Over 30% of ETEC isolates collected post-2013 and evaluated in this study demonstrated ESBL resistance. Persistent surveillance and characterization of enteric ETEC isolates are vital for tracking the community presence of MDR bacterial species in order to recommend effective treatment strategies and help mitigate the spread of resistant pathogens

    Carbapenemase-Producing Enterobacteriaceae and Nonfermentative Bacteria, the Philippines, 2013–2016

    No full text
    During 2013–2016, we isolated blaNDM- and blaVIM-harboring Enterobacteriaceae and nonfermentative bacteria from patients in the Philippines. Of 130 carbapenem-resistant isolates tested, 45 were Carba NP–positive; 43 harbored blaNDM, and 2 harbored blaVIM. Multidrug-resistant microbial pathogen surveillance and antimicrobial drug stewardship are needed to prevent further spread of New Delhi metallo-ÎČ-lactamase variants
    corecore