684 research outputs found

    Defamiliarizing translations of children’s literature in Meiji Japan: a study of Wakamatsu Shizuko’s Wasuregatami

    Get PDF
    This paper will examine Wasuregatami (‘The Memento’, 1890), Wakamatsu Shizuko’s Japanese translation of Adelaide Anne Procter’s poem The Sailor Boy (1858). The poem is narrativized into the Japanese monogatari style and the culturemes are assimilated into the target-culture context of Japan in an apparently domesticating approach. Nevertheless, Wakamatsu Shizuko’s inclusion in the translation of original source-culture items and the implementation of the experimental colloquial genbun itchi (vernacular) literary style could also exemplify Venuti’s foreignizing and “defamiliarizing” translation since it goes “beyond literalism to advocate an experimentalism” by using “registers, and styles already available in the translating language to create a discursive heterogeneity” (Venuti 2000: 341). This paper will contend that the style used in Wasuregatami was the cornerstone on which Shizuko would base her later, more acclaimed translations of children’s literature into Japanese.Aquest treball analitza Wasuregatami (‘El record’, 1890), la traducciĂł al japonĂšs de Wakamatsu Shizuko del poema The Sailor Boy (1858) d’Adelaide Anne Procter. El poema s’ha narrativitzat a l’estil japonĂšs monogatari i els culturemes s’han assimilat al context de la cultura d’arribada mitjançant un aparent enfocament domesticant. Tot i aixĂ­, la inclusiĂł a la traducciĂł d’elements originals pertanyents a la cultura de sortida i la implementaciĂł de l’estil literari col·loquial i experimental genbun itchi (vernacular) li atorguen a la traducciĂł qualitats estrangeritzants i desfamiliaritzants, ja que la traducciĂł va mĂ©s enllĂ  de la literalitat a fi d’advocar per un experimentalisme mitjançant l’Ășs de registres i estils ja disponibles a la llengua d’arribada, per tal de crear una heterogeneĂŻtat discursiva (Venuti 2000: 341). L’estudi defensa que l’estil emprat a Wasuregatami va servir de base a Wakamatsu Shizuko per a les posteriors (i mĂ©s reconegudes) traduccions d’obres de literatura infantil al japonĂšs

    Sequential use of a continuous-flow electrocoagulation reactor and a (photo)electro-Fenton recirculation system for the treatment of Acid Brown 14 diazo dye

    Full text link
    The decolorization and TOC removal of solutions of Acid Brown 14 (AB14) diazo dye containing 50 mg L-1 of total organic carbon (TOC) have been first studied in a continuous-flow electrocoagulation (EC) reactor of 3 L capacity with Fe electrodes of ~110 cm2 area each. Total loss of color with poor TOC removal was found in chloride, sulfate, and/or hydrogen carbonate matrices after 18 min of this treatment. The best performance was found using 5 anodes and 4 cathodes of Fe at 13.70 A and low liquid flow rate of 10 L h-1, in aerated 39.6 mM NaCl medium within a pH range of 4.0–10.0. The effluent obtained from EC was further treated by electro-Fenton (EF) using a 2.5 L pre-pilot flow plant, which was equipped with a filter-press cell comprising a Pt anode and an air-diffusion cathode for H2O2 electrogeneration. Operating with 0.10–1.0 mM Fe2+ as catalyst at pH 3.0 and 50 mA cm-2, a similar TOC removal of 68 % was found as maximal in chloride and sulfate media using the sequential EC-EF process. The EC-treated solutions were also treated by photoelectro-Fenton (PEF) employing a photoreactor with a 125 W UVA lamp. The sequential EC-PEF process yielded a much higher TOC reduction, close to 90 % and 97 % in chloride and sulfate media, respectively, due to the rapid photolysis of the final Fe(III)-carboxylate complexes. The formation of recalcitrant chloroderivatives from generated active chlorine limited the mineralization in the chloride matrix. For practical applications of this two-step technology, the high energy consumption of the UVA lamp in PEF could be reduced by using free sunlight

    Solar photoelectro-Fenton treatment of a mixture of parabens spiked into secondary treated wastewater eïŹ„uent at low input current

    Get PDF
    Aqueous mixtures of methyl, ethyl and propyl paraben (MeP, EtP and PrP) prepared in real urban wastewater with low conductivity were treated by solar photoelectro-Fenton (SPEF) process at low input current (j = 10 mA cm-2) using a pre-pilot plant with an electrochemical reactor equipped with an air-diffusion cathode to electrogenerate H2O2 and a boron-doped diamond (BDD) or RuO2-based anode. Comparative trials in simulated water matrices with or without Cl− in the absence of natural organic matter (NOM) always led to a slower decay of parabens concentration and total organic carbon (TOC). This was mainly due to the superior regeneration of Fe2+ from photoreduction of Fe(III) complexes formed with NOM in real wastewater compared to that from Fe(OH)2+. In all matrices, a catalyst concentration as low as 0.20 mM Fe2+ was enough to ensure the production of ¿OH in the bulk from Fenton's reaction. SPEF with BDD yielded a complete removal of parabens in 180 min and 66% mineralization at 240 min. This gave rise to the greatest mineralization current efficiencies reported so far, up to 1000%, with a low energy consumption of 84 kWh (kg TOC)-1. The synergy between homogeneous and heterogeneous catalysis, which allowed the efficient dosage of ¿OH and M(¿OH) at low j, with simultaneous action of high UV power from sunlight justified such a good performance. Analogous apparent rate constants were determined for MeP, EtP and PrP. Slower decays were found with RuO2-based anode due to its lower oxidation power. As a result, the MCE was 425% as maximum, but a lower energy consumption of 52 kWh (kg TOC)-1 was needed. Since the role of active chlorine was of minor importance, the formation of toxic, refractory chloroderivatives was minimized. All by-products were transformed into malic, formic and oxalic acids prior to total mineralization

    Loading carbonaceous materials with silver for the treatment of chloro-organic compounds in aqueous phase

    Get PDF
    Many electrochemical technologies, either based on novel concepts (such as microbial fuel cells), experimental setups (such as photoelectrochemical or solar photoelectro-Fenton reactors) or materials (mainly focused on the use of large O2-overpotential anodes like BDD) have been devised in recent years for water remediation. Special attention has been paid to highly toxic, biorefractory organic pollutants such as the chlorinated hydrocarbons, which conjugate toxicity with chemical stability, bioaccumulation and long-range diffusivity [1]. Electroreduction at silver cathodes becomes an interesting alternative to degrade chloro-organic compounds, but it may lead to the accumulation of reaction by-products, even upon coupling with electro-oxidation at BDD [2]. On the other hand, some Fenton-based processes have proven very effective for the destruction of organic matter due to the action of ‱OH formed when cathodically electrogenerated H2O2 reacts with added Fe2+ [3]. Based on this, we have envisaged a potential strategy for the enhanced removal of chloro-organic pollutants and their by-products: electro-Fenton process in the bulk upon H2O2 electrogeneration at a carbonaceous cathode, which can simultaneously act as the substrate for electroreduction at loaded Ag nanoparticles. To achieve this goal, a highly efficient material for H2O2 production, i.e., a gas diffusion electrode (GDE), has been chosen for Ag-loading experiments. Several authors have reported the preparation of Ag-loaded carbonaceous materials based on a simple electroless deposition (ELD) process from Ag+ solutions. Some of them have addressed the full preparation of GDEs with Ag catalysts [4,5]. Here, we report the use of a commercial GDE as a suitable substrate to obtain conveniently dispersed Ag nanoparticles. The effect of several ELD parameters (e.g., nature of reductant, mode of application and deposition time) on the surface morphology has been mainly studied by SEM-EDX. Bulk electrolyses in 50 mM Na2SO4 at various pH were subsequently performed with the best materials to assess their ability to electrogenerate H2O2. For comparison, carbon paper was used as an alternative substrate. An important objective of the research was to find the optimum conditions to load the substrate so as to keep the balance between covered and uncovered area, in order to favor both H2O2 production and pollutant electroreduction. The performances of these electrodes for the electrogeneration of H2O2 and the abatement of chloro-organic pollutants is currently being investigated. [1] S. Rondinini, A. Vertova, in Electrochemistry for the environment, 2010, pp. 279–306. [2] O. Scialdone, A. Galia, L. Gurreri, S. Randazzo, Electrochim. Acta 55 (2010) 701–708. [3] E. Brillas, I. SirĂ©s, M.A. Oturan, Chem. Rev. 109 (2009) 6570–6631. [4] E. GĂŒlzow, N. Wagner, M. Schulze, Fuel Cells 3 (2003) 67–72. [5] S. Rondinini, G. Aricci, Z. Krpetic, C. Locatelli, A. Minguzzi, F. Porta, A. Vertova, Fuel Cells 3 (2009) 253–263

    Editorial of the special issue on advanced electrochemical technologies for environmental applications

    Get PDF
    This special issue of Separation and Purification Technology gathers 27 articles, which are related to keynotes and oral or poster presentations at the 2nd European Workshop of Electrochemical Engineering entitled ‘New Bridges for a New Knowledge on Electrochemical Engineering’. The workshop was held from 1st to 5th October 2017 in Barcelona (Spain), as a Joint Event of the 10th World Congress of Chemical Engineering (WCCE10). This congress was promoted by the World Chemical Engineering Council (WCEC), the European Federation of Chemical Engineering (EFCE) and the European Society of Biochemical Engineering Sciences (ESBES) to approach researchers and specialists in all areas of chemical engineering and to improve their strategy for the development of innovative processes that will be vital for the society of tomorrow. The joint event was promoted by the Working Party on Electrochemical Engineering (WPEE) of the EFCE and co-organized with the Spanish Excellence Network on Environmental and Energy Applications of the Electrochemical Technology (thus being the 2nd Workshop of E3TECH Network). It took place at Fira de Barcelona, one of the most important trade fair institutions in Europe

    Treatment of cheese whey wastewater by combined electrochemical processes

    Get PDF
    This study shows the good performance of a sequential electrochemical methodology, consisting in electrocoagulation (EC) followed by an electrochemical advanced oxidation process (EAOP), to treat raw cheese whey wastewater at laboratory and pre-pilot scales. In EC, different electrode materials like Fe, Al and stainless steel (AISI 304 and ASI 316L) were tested. Among EAOPs, photoelectro-Fenton (PEF) and electrochemical oxidation (EO) with active anodes like Pt or DSA and non-active ones like boron-doped diamond (BDD) were studied. At both scales, the optimum anode/cathode combination in EC was Fe/AISI 304, which yielded the highest total organic carbon (TOC) removal of 22.0%-27.0%. This is due to various effects on organic compounds: (i) coagulation promoted by Fe(OH)3 flocs, (ii) cathodic reduction, and (iii) oxidation with generated active chlorine. At small scale, the resulting wastewater was further treated by PEF at pH 3.0. The highest TOC removal was achieved using the BDD, owing to the great oxidation power of hydroxyl radicals. In contrast, total nitrogen was abated much more rapidly with active anodes because of the attack of active chlorine on N-compounds. At pre-pilot scale, the post-treatment of conditioned wastewater made by EO with a BDD/Pt flow cell combined with UVA irradiation yielded the highest TOC removal, i.e., 49.1%. The high energy consumed by the UVA lamp would be a drawback at industrial scale, which could be overcome by using sunlight

    Continuous H2O2 production sustained by anodic O2 for the destruction of the antibiotic ampicillin by photoelectro-Fenton process in a rotating cylinder electrode reactor

    Full text link
    Complete degradation of the antibiotic ampicillin (AMP) by photoelectro-Fenton (PEF) process has been addressed for the first time. Once produced from water oxidation at six Ti|IrO2 anodic plates, O2 was quickly transported by forced convection toward the central RCE, which consisted of a 316 stainless-steel cylinder covered with a (C-PTFE)-coated carbon cloth, thus ensuring the continuous production of H2O2 from the twoelectron O2 reduction reaction (ORR). The accumulated H2O2 reached a concentration of 83.3 mg L-1 H2O2 after 60 min in a 50 mM Na2SO4 solution at pH 3, operating at an RCE peripheral velocity U = 79.6 cm s-1 and fixed cathodic potential of Ecath = - 0.45 V vs. SHE. Furthermore, the optimum PEF conditions led to the complete destruction of 10 mg L-1 AMP in only 10 min upon addition of 0.4 mM Fe2+ as catalyst under UVA light irradiation, with a low electrolytic energy consumption of 0.211 kWh (g TOC)-1. In addition, the evolution of final carboxylic acids and inorganic ions over the electrolysis time was monitored by chromatographic and spectrophotometric techniques. PEF treatment clearly outperformed the anodic oxidation with (AO-H2O2) and the electro-Fenton (EF) processes, which opens the door to a sustainable and powerful electrochemical technology with no need for an air compressor for H2O2 production and viable under limitless sunlight irradiation

    Boosting the electron transfer efficiency of Fe3+/Fe2+ cycle in electro-Fenton process using molybdenum: Performance and DFT study

    Get PDF
    Over the last decade, the electro-Fenton (EF) process has been recognized as one of the most popular electrochemical advanced oxidation processes (EAOPs), owing to its outstanding ability to generate highly oxidizing hydroxyl radicals (E°(radical dotOH/H2O) = 2.8 V/SHE), which can non-selectively degrade recalcitrant organic pollutants [1], [2], [3]. A notable feature of the EF process is the continuous in situ production of hydrogen peroxide (H2O2) via two-electron oxygen reduction reaction (1). This enables a continuous flow of radical dotOH generated from Fenton’s reaction (2), which occurs in the presence of added Fe2+ [4], [5]. Furthermore, in EF systems, this ion can be efficiently regenerated via cathodic reduction (reaction (3)), thus enhancing the process sustainability [6]. The effective H2O2 generation and Fe2+ regeneration become pivotal factors to attain high degradation efficiencies in EF [7]

    Blue LED light-driven photoelectrocatalytic removal of naproxen fromwater: Kinetics and primary by-products

    Get PDF
    Here, we demonstrate the viability of a ZnO/TiO2/Ag2Se thin-film composite synthesized on FTO to degrade the drug naproxen in aqueous solutions by visible-light photoelectrocatalysis (PEC). The experiments were made with 100 mL of solutions containing 5 mg L−1 drug and 50 mM Na2SO4 at natural pH, using a cell equipped with a Pt wire as cathode and the composite as photoanode exposed to a 36Wblue LED lamp. Total degradation was achieved after 210 min of electrolysis at anodic potential of +1.0 V/Ag|AgCl. This resulted from the oxidative action of hydroxyl radicals formed via direct anodic water discharge and through mediated water oxidation by photogenerated holes. The degradation rate decreased at higher naproxen concentration, but the treatment efficiency became higher due the deceleration of the parasitic reactions involving hydroxyl radicals. In chloride medium, the photoanode showed a large ability to produce active chlorine, which contributed to the oxidation of the target molecule. LC-QToF-MS analysis of treated solutions revealed the generation of four primary naphthalenic by-products, from which the initial degradation route of naproxen is proposed
    • 

    corecore