46 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Recent developments in Monte Carlo codes for edge plasma studies

    No full text
    Preprint of the paper to be published in the proceedings of the 8th International Workshop on Plasma Edge Theory in Fusion. Includes bibliographical referencesAvailable from British Library Document Supply Centre- DSC:3829. 715695((01)69) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Chapter 4: Power and particle control

    No full text

    Sarcopenia: its assessment, etiology, pathogenesis, consequences and future

    No full text
    Sarcopenia is a loss of muscle protein mass and loss of muscle function. It occurs with increasing age, being a major component in the development of frailty. Current knowledge on its assessment, etiology, pathogenesis, consequences and future perspectives are reported in the present review. On-going and future clinical trials on sarcopenia may radically change our preventive and therapeutic approaches of mobility disability in older peopleY. Rolland, S. Czerwinski, G. Abellan Van Kan, J.E. Morley, M. Cesari, G. Onder, J. Woo, R. Baumgartner, F. Pillard, Y. Boirie, W.M.C. Chumlea, B. Vella

    Overview of JET results

    No full text
    Since the last IAEA conference, the scientific programme of JET has focused on the qualification of the integrated operating scenarios for ITER and on physics issues essential for the consolidation of design choices and the efficient exploitation of ITER. Particular attention has been given to the characterization of the edge plasma, pedestal energy and edge localized modes (ELMs), and their impact on plasma facing components (PFCs). Various ELM mitigation techniques have been assessed for all ITER operating scenarios using active methods such as resonant magnetic field perturbation, rapid variation of the radial field and pellet pacing. In particular, the amplitude and frequency of type I ELMs have been actively controlled over a wide parameter range (q95 = 3-4.8, βN ≥ 3.0) by adjusting the amplitude of the n = 1 external perturbation field induced by error field correction coils. The study of disruption induced heat loads on PFCs has taken advantage of a new wide-angle viewing infrared system and a fast bolometer to provide a detailed account of time, localization and form of the energy deposition. Specific ITER-relevant studies have used the unique JET capability of varying the toroidal field (TF) ripple from its normal low value δBT = 0.08% up to δBT = 1% to study the effect of TF ripple on high confinement-mode plasmas. The results suggest that δBT < 0.5% is required on ITER to maintain adequate confinement to allow QDT = 10 at full field. Physics issues of direct relevance to ITER include heat and toroidal momentum transport, with experiments using power modulation to decouple power input and torque to achieve first experimental evidence of inward momentum pinch in JET and determine the threshold for ion temperature gradient driven modes. Within the longer term JET programme in support of ITER, activities aiming at the modification of the JET first wall and divertor and the upgrade of the neutral beam and plasma control systems are being conducted. The procurement of all components will be completed by 2009 with the shutdown for the installation of the beryllium wall and tungsten divertor extending from summer 2009 to summer 2010

    Overview of JET results

    No full text
    corecore