120 research outputs found
World citation and collaboration networks: uncovering the role of geography in science
Modern information and communication technologies, especially the Internet,
have diminished the role of spatial distances and territorial boundaries on the
access and transmissibility of information. This has enabled scientists for
closer collaboration and internationalization. Nevertheless, geography remains
an important factor affecting the dynamics of science. Here we present a
systematic analysis of citation and collaboration networks between cities and
countries, by assigning papers to the geographic locations of their authors'
affiliations. The citation flows as well as the collaboration strengths between
cities decrease with the distance between them and follow gravity laws. In
addition, the total research impact of a country grows linearly with the amount
of national funding for research & development. However, the average impact
reveals a peculiar threshold effect: the scientific output of a country may
reach an impact larger than the world average only if the country invests more
than about 100,000 USD per researcher annually.Comment: Published version. 9 pages, 5 figures + Appendix, The world citation
and collaboration networks at both city and country level are available at
http://becs.aalto.fi/~rajkp/datasets.htm
Avoiding Treatment Interruptions: What Role Do Australian Community Pharmacists Play?
OBJECTIVE: To explore the reported practice of Australian community pharmacists when dealing with medication supply requests in absence of a valid prescription. METHODS: Self-administered questionnaire was posted to 1490 randomly selected community pharmacies across all Australian states and territories. This sample was estimated to be a 20% of all Australian community pharmacies. RESULTS: Three hundred eighty five pharmacists participated in the study (response rate achieved was 27.9% (there were 111 undelivered questionnaires). Respondents indicated that they were more likely to provide medications to regular customers without a valid prescription compared to non-regular customers (p<0.0001). However, supply was also influenced by the type of prescription and the medication requested. In the case of type of prescription (Standard, Authority or Private) this relates to the complexity/probability of obtaining a valid prescription from the prescriber at a later date (i.e. supply with an anticipated prescription). Decisions to supply and/or not supply related to medication type were more complex. For some cases, including medication with potential for abuse, the practice and/or the method of supply varied significantly according to age and gender of the pharmacist, and pharmacy location (p<0.05). CONCLUSIONS: Although being a regular customer does not guarantee a supply, results of this study reinforce the importance for patients having a regular pharmacy, where pharmacists were more likely to continue medication supply in cases of patients presenting without a valid prescription. We would suggest, more flexible legislation should be implemented to allow pharmacists to continue supplying of medication when obtaining a prescription is not practical
Comparison of Strategies to Detect Epistasis from eQTL Data
Genome-wide association studies have been instrumental in identifying genetic variants associated with complex traits such as human disease or gene expression phenotypes. It has been proposed that extending existing analysis methods by considering interactions between pairs of loci may uncover additional genetic effects. However, the large number of possible two-marker tests presents significant computational and statistical challenges. Although several strategies to detect epistasis effects have been proposed and tested for specific phenotypes, so far there has been no systematic attempt to compare their performance using real data. We made use of thousands of gene expression traits from linkage and eQTL studies, to compare the performance of different strategies. We found that using information from marginal associations between markers and phenotypes to detect epistatic effects yielded a lower false discovery rate (FDR) than a strategy solely using biological annotation in yeast, whereas results from human data were inconclusive. For future studies whose aim is to discover epistatic effects, we recommend incorporating information about marginal associations between SNPs and phenotypes instead of relying solely on biological annotation. Improved methods to discover epistatic effects will result in a more complete understanding of complex genetic effects
A revised evolutionary history of the CYP1A subfamily : gene duplication, gene conversion, and positive selection
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Molecular Evolution 62 (2006): 708-717, doi:10.1007/s00239-005-0134-z.Members of cytochrome P450 subfamily 1A (CYP1As) are involved in detoxification and bioactivation of common environmental pollutants. Understanding the functional evolution of these genes is essential to predicting and interpreting species differences in sensitivity to toxicity by such chemicals. The CYP1A gene subfamily comprises a single ancestral representative in most fish species and two paralogs in higher vertebrates, including birds and mammals. Phylogenetic analysis of complete coding sequences suggests that mammalian and bird paralog pairs (CYP1A1/2 and CYP1A4/5, respectively) are the result of independent gene duplication events. However, comparison of vertebrate genome sequences revealed that CYP1A genes lie within an extended region of conserved fine-scale synteny, suggesting that avian and mammalian CYP1A paralogs share a common genomic history. Algorithms designed to detect recombination between nucleotide sequences indicate that gene conversion has homogenized most of the length of the chicken CYP1A genes, as well as the 5’ end of mammalian CYP1As. Together, these data indicate that avian and mammalian CYP1A paralog pairs resulted from a single gene duplication event and that extensive gene conversion is responsible for the exceptionally high degree of sequence similarity between CYP1A4 and CYP1A5. Elevated non-synonymous/synonymous substitution ratios within a putatively unconverted stretch of ~250 bp suggests that positive selection may have reduced the effective rate of gene conversion in this region, which contains two substrate recognition sites. This work significantly alters our understanding of functional evolution in the CYP1A subfamily, suggesting that gene conversion and positive selection have been the dominant processes of sequence evolution.Funding for this work was provided by the NIH Superfund Basic Research Program at Boston University (5-P42-ES-07381) and by the Woods Hole Oceanographic Institution
The equilibria that allow bacterial persistence in human hosts
We propose that microbes that have developed persistent relationships with human hosts have evolved cross-signalling mechanisms that permit homeostasis that conforms to Nash equilibria and, more specifically, to evolutionarily stable strategies. This implies that a group of highly diverse organisms has evolved within the changing contexts of variation in effective human population size and lifespan, shaping the equilibria achieved, and creating relationships resembling climax communities. We propose that such ecosystems contain nested communities in which equilibrium at one level contributes to homeostasis at another. The model can aid prediction of equilibrium states in the context of further change: widespread immunodeficiency, changing population densities, or extinctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62883/1/nature06198.pd
Veterans walk to beat back pain: study rationale, design and protocol of a randomized trial of a pedometer-based Internet mediated intervention for patients with chronic low back pain
<p>Abstract</p> <p>Background</p> <p>Chronic back pain is a significant problem worldwide and may be especially prevalent among patients receiving care in the U.S. Department of Veterans Affairs healthcare system. Back pain affects adults at all ages and is associated with disability, lost workplace productivity, functional limitations and social isolation. Exercise is one of the most effective strategies for managing chronic back pain. Yet, there are few clinical programs that use low cost approaches to help patients with chronic back pain initiate and maintain an exercise program.</p> <p>Methods/Design</p> <p>We describe the design and rationale of a randomized controlled trial to assess the efficacy of a pedometer-based Internet mediated intervention for patients with chronic back pain. The intervention uses an enhanced pedometer, website and e-community to assist these patients with initiating and maintaining a regular walking program with the primary aim of reducing pain-related disability and functional interference. The study specific aims are: 1) To determine whether a pedometer-based Internet-mediated intervention reduces pain-related functional interference among patients with chronic back pain in the short term and over a 12-month timeframe. 2) To assess the effect of the intervention on walking (measured by step counts), quality of life, pain intensity, pain related fear and self-efficacy for exercise. 3) To identify factors associated with a sustained increase in walking over a 12-month timeframe among patients randomized to the intervention.</p> <p>Discussion</p> <p>Exercise is an integral part of managing chronic back pain but to be effective requires that patients actively participate in the management process. This intervention is designed to increase activity levels, improve functional status and make exercise programs more accessible for a broad range of patients with chronic back pain.</p> <p>Trial Registration Number</p> <p>NCT00694018</p
Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352
Pan-cancer analysis of whole genomes
Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe
- …