49 research outputs found
Archaea are prominent members of the prokaryotic communities colonizing common forest mushrooms
In this study, the abundance and composition of prokaryotic communities associated with the inner tissue of fruiting bodies of Suillus bovinus, Boletus pinophilus, Cantharellus cibarius, Agaricus arvensis, Lycoperdon perlatum, and Piptoporus betulinus were analyzed using culture-independent methods. Our findings indicate that archaea and bacteria colonize the internal tissues of all investigated specimens and that archaea are prominent members of the prokaryotic community. The ratio of archaeal 16S rRNA gene copy numbers to those of bacteria was >1 in the fruiting bodies of four out of six fungal species included in the study. The largest proportion of archaeal 16S rRNA gene sequences belonged to thaumarchaeotal classes Terrestrial group, Miscellaneous Crenar-chaeotic Group (MCG), and Thermoplasmata. Bacterial communities showed characteristic compositions in each fungal species. Bacterial classes Gammaproteobacteria, Actinobacteria, Bacilli, and Clostridia were prominent among communities in fruiting body tissues. Bacterial populations in each fungal species had different characteristics. The results of this study imply that fruiting body tissues are an important habitat for abundant and diverse populations of archaea and bacteria.Peer reviewe
The power and potential of BIOMAP to elucidate host-microbiome interplay in skin inflammatory diseases
The two most common chronic inflammatory skin diseases are atopic dermatitis (AD) and psoriasis. The underpinnings of the remarkable degree of clinical heterogeneity of AD and psoriasis are poorly understood and, as a consequence, disease onset and progression are unpredictable and the optimal type and time point for intervention are as yet unknown. The BIOMAP project is the first IMI (Innovative Medicines Initiative) project dedicated to investigating the causes and mechanisms of AD and psoriasis and to identify potential biomarkers responsible for the variation in disease outcome. The consortium includes 7 large pharmaceutical companies and 25 non-industry partners including academia. Since there is mounting evidence supporting an important role for microbial exposures and our microbiota as factors mediating immune polarization and AD and psoriasis pathogenesis, an entire work package is dedicated to the investigation of skin and gut microbiome linked to AD or psoriasis. The large collaborative BIOMAP project will enable the integration of patient cohorts, data and knowledge in unprecedented proportions. The project has a unique opportunity with a potential to bridge and fill the gaps between current problems and solutions. This review highlights the power and potential of the BIOMAP project in the investigation of microbe-host interplay in AD and psoriasis.Peer reviewe
Children's and adolescents' rising animal-source food intakes in 1990-2018 were impacted by age, region, parental education and urbanicity
Animal-source foods (ASF) provide nutrition for children and adolescents physical and cognitive development. Here, we use data from the Global Dietary Database and Bayesian hierarchical models to quantify global, regional and national ASF intakes between 1990 and 2018 by age group across 185 countries, representing 93% of the worlds child population. Mean ASF intake was 1.9 servings per day, representing 16% of children consuming at least three daily servings. Intake was similar between boys and girls, but higher among urban children with educated parents. Consumption varied by age from 0.6 at <1 year to 2.5 servings per day at 1519 years. Between 1990 and 2018, mean ASF intake increased by 0.5 servings per week, with increases in all regions except sub-Saharan Africa. In 2018, total ASF consumption was highest in Russia, Brazil, Mexico and Turkey, and lowest in Uganda, India, Kenya and Bangladesh. These findings can inform policy to address malnutrition through targeted ASF consumption programmes. (c) 2023, The Author(s)
Incident type 2 diabetes attributable to suboptimal diet in 184 countries
The global burden of diet-attributable type 2 diabetes (T2D) is not well established. This risk assessment model estimated T2D incidence among adults attributable to direct and body weight-mediated effects of 11 dietary factors in 184 countries in 1990 and 2018. In 2018, suboptimal intake of these dietary factors was estimated to be attributable to 14.1 million (95% uncertainty interval (UI), 13.814.4 million) incident T2D cases, representing 70.3% (68.871.8%) of new cases globally. Largest T2D burdens were attributable to insufficient whole-grain intake (26.1% (25.027.1%)), excess refined rice and wheat intake (24.6% (22.327.2%)) and excess processed meat intake (20.3% (18.323.5%)). Across regions, highest proportional burdens were in central and eastern Europe and central Asia (85.6% (83.487.7%)) and Latin America and the Caribbean (81.8% (80.183.4%)); and lowest proportional burdens were in South Asia (55.4% (52.160.7%)). Proportions of diet-attributable T2D were generally larger in men than in women and were inversely correlated with age. Diet-attributable T2D was generally larger among urban versus rural residents and higher versus lower educated individuals, except in high-income countries, central and eastern Europe and central Asia, where burdens were larger in rural residents and in lower educated individuals. Compared with 1990, global diet-attributable T2D increased by 2.6 absolute percentage points (8.6 million more cases) in 2018, with variation in these trends by world region and dietary factor. These findings inform nutritional priorities and clinical and public health planning to improve dietary quality and reduce T2D globally. (c) 2023, The Author(s)
Microbe-host interplay in atopic dermatitis and psoriasis
Despite recent advances in understanding microbial diversity in skin homeostasis, the relevance of microbial dysbiosis in inflammatory disease is poorly understood. Here we perform a comparative analysis of skin microbial communities coupled to global patterns of cutaneous gene expression in patients with atopic dermatitis or psoriasis. The skin microbiota is analysed by 16S amplicon or whole genome sequencing and the skin transcriptome by microarrays, followed by integration of the data layers. We find that atopic dermatitis and psoriasis can be classified by distinct microbes, which differ from healthy volunteers microbiome composition. Atopic dermatitis is dominated by a single microbe (Staphylococcus aureus), and associated with a disease relevant host transcriptomic signature enriched for skin barrier function, tryptophan metabolism and immune activation. In contrast, psoriasis is characterized by co-occurring communities of microbes with weak associations with disease related gene expression. Our work provides a basis for biomarker discovery and targeted therapies in skin dysbiosis.Peer reviewe
Yields and greenhouse gas emissions of cultivation of red clover-grass leys as assessed by LCA when fertilised with organic or mineral fertilisers.
Red clover-grass leys were fertilized with cow manure or with chemical fertilizers. The yields were lower with organic fertilizers, but nevertheless the GHG emissions were lower per tonne of biomass in organic than in conventional conditions, even when the extra need for cultivation area to gain equal amounts of yield was considered. Results of a 4 year field experiment in Southern Finland