17,236 research outputs found

    Scattering states of a particle, with position-dependent mass, in a PT{\cal{PT}} symmetric heterojunction

    Full text link
    The study of a particle with position-dependent effective mass (pdem), within a double heterojunction is extended into the complex domain --- when the region within the heterojunctions is described by a non Hermitian PT{\cal{PT}} symmetric potential. After obtaining the exact analytical solutions, the reflection and transmission coefficients are calculated, and plotted as a function of the energy. It is observed that at least two of the characteristic features of non Hermitian PT{\cal{PT}} symmetric systems --- viz., left / right asymmetry and anomalous behaviour at spectral singularity, are preserved even in the presence of pdem. The possibility of charge conservation is also discussed.Comment: 12 pages, including 6 figures; Journal of Physics A : Math. Theor. (2012

    Collider Detection of Dark Matter Electromagnetic Anapole Moments

    Get PDF
    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly as well as weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-ZZ signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.Comment: 24 pages, 9 figure

    SWKB Quantization Rules for Bound States in Quantum Wells

    Get PDF
    In a recent paper by Gomes and Adhikari (J.Phys B30 5987(1997)) a matrix formulation of the Bohr-Sommerfield quantization rule has been applied to the study of bound states in one dimension quantum wells. Here we study these potentials in the frame work of supersymmetric WKB (SWKB) quantization approximation and find that SWKB quantization rule is superior to the modified Bohr-Sommerfield or WKB rules as it exactly reproduces the eigenenergies.Comment: 8 page

    Hyperon bulk viscosity in strong magnetic fields

    Full text link
    We study the bulk viscosity of neutron star matter including Λ\Lambda hyperons in the presence of quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak process involving Λ\Lambda hyperons and direct Urca processes are calculated here. In the presence of a strong magnetic field of 101710^{17} G, the hyperon bulk viscosity coefficient is reduced whereas bulk viscosity coefficients due to direct Urca processes are enhanced compared with their field free cases when many Landau levels are populated by protons, electrons and muons.Comment: LaTex, 28 pages including 9 figures; new results are discussed in section I

    Elasticity of semi-flexible polymers

    Full text link
    We present a numerical solution of the Worm-Like Chain (WLC) model for semi-flexible polymers. We display graphs for the end-to-end distance distribution and the force-extension relation expected from the model. We predict the expected level of fluctuations around the mean value in force-extension curves. Our treatment analyses the entire range of polymer lengths and reproduces interesting qualitative features seen in recent computer simulations for polymers of intermediate length. These results can be tested against experiments on single molecules. This study is relevant to mechanical properties of biological molecules.Comment: five pages revtex five figures, slightly improved version with recent references adde
    corecore