1 research outputs found

    Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis

    Get PDF
    24 Pags., 9 Figs., 2 Tabls., with Supplemental Data (15 Figs., 3 Tabls., 1 Method, 1 Data Set).The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research.We acknowledge postdoctoral fellowships to M.B. from the Alexander von Humboldt Foundation and the Spanish Ministry of Science and Innovation; a Deutsche Forschungsgemeinshaft Heisenberg fellowship and funding from the FRONTIERS program at the University of Heidelberg, Germany, and the European Union InP Public Health Impact of Long-Term, Low-Level Mixed Element Exposure in Susceptible Population Strata (FOOD-CT-2006-016253) to U.K.; a grant from the National Science Foundation (IOS-0919739) to E.L.C.; a postdoctoral fellowship from the Spanish Foundation of Science and Technology (MEC-FECYT) to D.C.; National Institutes of Health Grant GM42143 to S.S.M.; and support from the University of California, Los Angeles–Department of Energy Institute for Genomics and Proteomics under Contract DE-FC02-02ER63421 to M.P.Peer reviewe
    corecore