9,888 research outputs found

    Microscopic theories of neutrino-^{12}C reactions

    Get PDF
    In view of the recent experiments on neutrino oscillations performed by the LSND and KARMEN collaborations as well as of future experiments, we present new theoretical results of the flux averaged 12C(νe,e)12N^{12}C(\nu_e,e^-)^{12}N and 12C(νμ,μ)12N^{12}C(\nu_{\mu},{\mu}^-)^{12}N cross sections. The approaches used are charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the Shell Model. With a large-scale shell model calculation the exclusive cross sections are in nice agreement with the experimental values for both reactions. The inclusive cross section for νμ\nu_{\mu} coming from the decay-in-flight of π+\pi^+ is 15.2×1040cm215.2 \times 10^{-40} cm^2 to be compared to the experimental value of 12.4±0.3±1.8×1040cm212.4 \pm 0.3 \pm 1.8 \times 10^{-40} cm^2, while the one due to νe\nu_{e} coming from the decay-at-rest of μ+\mu^+ is 16.4×1042cm216.4 \times 10^{-42} cm^2 which agrees within experimental error bars with the measured values. The shell model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one. This is mainly due to the different kind of correlations taken into account in the calculation of the spin modes and partially due to the shell-model configuration basis which is not large enough, as we show using arguments based on sum-rules.Comment: 17 pages, latex, 5 figure

    Comparative performance of some popular ANN algorithms on benchmark and function approximation problems

    Full text link
    We report an inter-comparison of some popular algorithms within the artificial neural network domain (viz., Local search algorithms, global search algorithms, higher order algorithms and the hybrid algorithms) by applying them to the standard benchmarking problems like the IRIS data, XOR/N-Bit parity and Two Spiral. Apart from giving a brief description of these algorithms, the results obtained for the above benchmark problems are presented in the paper. The results suggest that while Levenberg-Marquardt algorithm yields the lowest RMS error for the N-bit Parity and the Two Spiral problems, Higher Order Neurons algorithm gives the best results for the IRIS data problem. The best results for the XOR problem are obtained with the Neuro Fuzzy algorithm. The above algorithms were also applied for solving several regression problems such as cos(x) and a few special functions like the Gamma function, the complimentary Error function and the upper tail cumulative χ2\chi^2-distribution function. The results of these regression problems indicate that, among all the ANN algorithms used in the present study, Levenberg-Marquardt algorithm yields the best results. Keeping in view the highly non-linear behaviour and the wide dynamic range of these functions, it is suggested that these functions can be also considered as standard benchmark problems for function approximation using artificial neural networks.Comment: 18 pages 5 figures. Accepted in Pramana- Journal of Physic

    Shell-model calculations of neutrino scattering from 12C

    Get PDF
    Neutrino reaction cross-sections, (νμ,μ)(\nu_\mu,\mu^-), (νe,e)(\nu_e,e^-), μ\mu-capture and photoabsorption rates on 12^{12}C are computed within a large-basis shell-model framework, which included excitations up to 4ω4\hbar\omega. When ground-state correlations are included with an open pp-shell the predictions of the calculations are in reasonable agreement with most of the experimental results for these reactions. Woods-Saxon radial wave functions are used, with their asymptotic forms matched to the experimental separation energies for bound states, and matched to a binding energy of 0.01 MeV for unbound states. For comparison purposes, some results are given for harmonic oscillator radial functions. Closest agreement between theory and experiment is achieved with unrestricted shell-model configurations and Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive cross sections: σˉ=13.8×1040\bar{\sigma} = 13.8 \times 10^{-40} cm2^2 for the (νμ,μ)(\nu_{\mu},\mu^{-}) decay-in-flight flux in agreement with the LSND datum of (12.4±1.8)×1040(12.4 \pm 1.8) \times 10^{-40} cm2^2; and σˉ=12.5×1042\bar{\sigma} = 12.5 \times 10^{-42} cm2^2 for the (νe,e)(\nu_{e},e^{-}) decay-at-rest flux, less than the experimental result of (14.4±1.2)×1042(14.4 \pm 1.2) \times 10^{-42} cm2^2.Comment: 19 pages. ReVTeX. No figure

    Are lay people good at recognising the symptoms of schizophrenia?

    Get PDF
    ©2013 Erritty, Wydell. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Aim: The aim of this study was to explore the general public’s perception of schizophrenia symptoms and the need to seekhelp for symptoms. The recognition (or ‘labelling’) of schizophrenia symptoms, help-seeking behaviours and public awareness of schizophrenia have been suggested as potentially important factors relating to untreated psychosis. Method: Participants were asked to rate to what extent they believe vignettes describing classic symptoms (positive and negative) of schizophrenia indicate mental illness. They were also asked if the individuals depicted in the vignettes required help or treatment and asked to suggest what kind of help or treatment. Results: Only three positive symptoms (i.e., Hallucinatory behaviour, Unusual thought content and Suspiciousness) of schizophrenia were reasonably well perceived (above 70%) as indicating mental illness more than the other positive or negative symptoms. Even when the participants recognised that the symptoms indicated mental illness, not everyone recommended professional help. Conclusion: There may be a need to improve public awareness of schizophrenia and psychosis symptoms, particularly regarding an awareness of the importance of early intervention for psychosis

    Temperature and Density Effects on the Nucleon Mass Splitting

    Get PDF
    The finite temperature and finite density dependence of the neutron-proton mass difference is analysed in a purely hadronic framework where the ρω\rho-\omega mixing is crucial for this isospin symmetry breakdown. The problem is handled within Thermo Field Dynamics. The present results, consistent with partial chiral and charge symmetry restoration, improve the experimental data fit for the energy difference between mirror nuclei.Comment: 17 pages, revtex fil

    Measurement of Charged Pion Production Yields off the NuMI Target

    Full text link
    The fixed-target MIPP experiment, Fermilab E907, was designed to measure the production of hadrons from the collisions of hadrons of momenta ranging from 5 to 120 GeV/c on a variety of nuclei. These data will generally improve the simulation of particle detectors and predictions of particle beam fluxes at accelerators. The spectrometer momentum resolution is between 3 and 4%, and particle identification is performed for particles ranging between 0.3 and 80 GeV/c using dE/dxdE/dx, time-of-flight and Cherenkov radiation measurements. MIPP collected 1.42×1061.42 \times10^6 events of 120 GeV Main Injector protons striking a target used in the NuMI facility at Fermilab. The data have been analyzed and we present here charged pion yields per proton-on-target determined in bins of longitudinal and transverse momentum between 0.5 and 80 GeV/c, with combined statistical and systematic relative uncertainties between 5 and 10%.Comment: 15 pages, 13 figure

    Second harmonic generation in SiC polytypes

    Full text link
    LMTO calculations are presented for the frequency dependent second harmonic generation (SHG) in the polytypes 2H, 4H, 6H, 15R and 3C of SiC. All independent tensor components are calculated. The spectral features and the ratios of the 333 to 311 tensorial components are studied as a function of the degree of hexagonality. The relationship to the linear optical response and the underlying band structure are investigated. SHG is suggested to be a sensitive tool for investigating the near band edge interband excitations.Comment: 12 pages, 10 figure

    Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators

    Full text link
    We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl_2 and bilayer YBa_2Cu_3O_{6 + \delta} antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the two-magnon line shape and strong nonmonotic dependence of the scattering intensity on excitation energy. We analyze these data using the triple resonance theory of Chubukov and Frenkel (Phys. Rev. Lett., 74, 3057 (1995)) and deduce information about magnetic interaction and band parameters in these materials.Comment: REVTeX, 4 pages + 2 PostScript (compressed) figure
    corecore