59,133 research outputs found
Dislocation nucleation and vacancy formation during high-speed deformation of fcc metals
Recently, a dislocation free deformation mechanism was proposed by Kiritani
et al., based on a series of experiments where thin foils of fcc metals were
deformed at very high strain rates. In the experimental study, they observed a
large density of stacking fault tetrahedra, but very low dislocation densities
in the foils after deformation. This was interpreted as evidence for a new
dislocation-free deformation mechanism, resulting in a very high vacancy
production rate.
In this paper we investigate this proposition using large-scale computer
simulations of bulk and thin films of copper. To favour such a dislocation-free
deformation mechanism, we have made dislocation nucleation very difficult by
not introducing any potential dislocation sources in the initial configuration.
Nevertheless, we observe the nucleation of dislocation loops, and the
deformation is carried by dislocations. The dislocations are nucleated as
single Shockley partials.
The large stresses required before dislocations are nucleated result in a
very high dislocation density, and therefore in many inelastic interactions
between the dislocations. These interactions create vacancies, and a very large
vacancy concentration is quickly reached.Comment: LaTeX2e, 8 pages, PostScript figures included. Minor modifications
only. Final version, to appear in Philos. Mag. Let
Modelling of dislocation generation and interaction during high-speed deformation of metals
Recent experiments by Kiritani et al. have revealed a surprisingly high rate
of vacancy production during high-speed deformation of thin foils of fcc
metals. Virtually no dislocations are seen after the deformation. This is
interpreted as evidence for a dislocation-free deformation mechanism at very
high strain rates.
We have used molecular-dynamics simulations to investigate high-speed
deformation of copper crystals. Even though no pre-existing dislocation sources
are present in the initial system, dislocations are quickly nucleated and a
very high dislocation density is reached during the deformation.
Due to the high density of dislocations, many inelastic interactions occur
between dislocations, resulting in the generation of vacancies. After the
deformation, a very high density of vacancies is observed, in agreement with
the experimental observations. The processes responsible for the generation of
vacancies are investigated. The main process is found to be incomplete
annihilation of segments of edge dislocations on adjacent slip planes. The
dislocations are also seen to be participating in complicated dislocation
reactions, where sessile dislocation segments are constantly formed and
destroyed.Comment: 8 pages, LaTeX2e + PS figures. Presented at the Third Workshop on
High-speed Plastic Deformation, Hiroshima, August 200
Quantum mechanics without spacetime II : noncommutative geometry and the free point particle
In a recent paper we have suggested that a formulation of quantum mechanics
should exist, which does not require the concept of time, and that the
appropriate mathematical language for such a formulation is noncommutative
differential geometry. In the present paper we discuss this formulation for the
free point particle, by introducing a commutation relation for a set of
noncommuting coordinates. The sought for background independent quantum
mechanics is derived from this commutation relation for the coordinates. We
propose that the basic equations are invariant under automorphisms which map
one set of coordinates to another- this is a natural generalization of
diffeomorphism invariance when one makes a transition to noncommutative
geometry. The background independent description becomes equivalent to standard
quantum mechanics if a spacetime manifold exists, because of the proposed
automorphism invariance. The suggested basic equations also give a quantum
gravitational description of the free particle.Comment: 8 page
Phase diagram and magnetic collective excitations of the Hubbard model in graphene sheets and layers
We discuss the magnetic phases of the Hubbard model for the honeycomb lattice
both in two and three spatial dimensions. A ground state phase diagram is
obtained depending on the interaction strength
U and electronic density n. We find a first order phase transition between
ferromagnetic regions where the spin is maximally polarized (Nagaoka
ferromagnetism) and regions with smaller magnetization (weak ferromagnetism).
When taking into account the possibility of spiral states, we find that the
lowest critical U is obtained for an ordering momentum different from zero. The
evolution of the ordering momentum with doping is discussed. The magnetic
excitations (spin waves) in the antiferromagnetic insulating phase are
calculated from the random-phase-approximation for the spin susceptibility. We
also compute the spin fluctuation correction to the mean field magnetization by
virtual emission/absorpion of spin waves. In the large limit, the
renormalized magnetization agrees qualitatively with the Holstein-Primakoff
theory of the Heisenberg antiferromagnet, although the latter approach produces
a larger renormalization
The generalized gradient approximation kernel in time-dependent density functional theory
A complete understanding of a material requires both knowledge of the excited
states as well as of the ground state. In particular, the low energy
excitations are of utmost importance while studying the electronic, magnetic,
dynamical, and thermodynamical properties of the material. Time-Dependent
Density Functional Theory (TDDFT), within the linear regime, is a successful
\textit{ab-initio} method to access the electronic charge and spin excitations.
However, it requires an approximation to the exchange-correlation (XC) kernel
which encapsulates the effect of electron-electron interactions in the
many-body system. In this work we derive and implement the spin-polarized XC
kernel for semi-local approximations such as the adiabatic Generalized Gradient
Approximation (AGGA). This kernel has a quadratic dependence on the wavevector,
{\bf q}, of the perturbation, however the impact of this on the electron energy
loss spectra (EELS) is small. Although the GGA functional is good in predicting
structural properties, it generality overestimates the exchange spin-splitting.
This leads to higher magnon energies, as compared to both ALDA and experiment.
In addition, interaction with the Stoner spin-flip continuum is enhanced by
AGGA, which strongly suppresses the intensity of spin-waves.Comment: 11 pages, 7 figure
The Mott insulator - 10th order perturbation theory extended to infinite order using QMC
We present a new method, based on the combination of analytical and numerical
techniques within the framework of the dynamical mean-field theory (DMFT).
Building upon numerically exact results obtained in an improved quantum Monte
Carlo (QMC) scheme, 10th order strong-coupling perturbation theory for the
Hubbard model on the Bethe lattice is extrapolated to infinite order. We obtain
continuous estimates of energy E and double occupancy D with unprecedented
precision O(10^{-5}) for the Mott insulator above its stability edge
U_{c1}=4.78 as well as critical exponents. The relevance for recent experiments
on Cr-doped V_2O_3 is pointed out.Comment: 4 pages, 5 figures. Significant changes in introduction and summary;
experimental reference added; Figs. 1 and 3 modifie
Optimum Trajectories with Specified Transfer Angle
Inter-orbital optimum trajectories with specified transfer angle in an inverse square gravitational field have been analysed. Criterion of optimization adopted is minimum velocity increment in the entire transfer operation with one impulse each at the initial and final terminal. Particular cases of the above problem are discussed and as a numerical illustration, results are obtained for transfer trajectories between two orbits in Earth's gravitational field
- …