2,806 research outputs found

    Immune cell interactions with stellate cells modulating HBV-related liver fibrosis

    Get PDF
    Chronic infection with hepatitis B virus is a global health issue, leading to liver cirrhosis and hepatocellular carcinoma that accounts for more than six hundred thousand deaths annually. Recent work has focused on the role of Natural killer (NK) cells in liver fibrosis in other contexts. In CHB, NK cells have been shown to play an anti-viral as well as an immunoregulatory role. Here we investigate the role of NK cells in the context of CHB-driven liver fibrosis, using primary hepatic stellate cells (HSC) isolated from healthy human liver margins. Our results demonstrate that NK cells from CHB patients have a highly variable and limited potential to kill hepatic stellate cells, which is increased in patients with progressive liver fibrosis, is further enhanced by interferon-alpha pre-activation in vitro and is abrogated by antiviral therapy with nucleos(t)ide inhibitors. We have explored the role of the death ligand TRAIL expressed on NK cells in inducing apoptosis of stellate cells that express high levels of the death-inducing receptor TRAIL-R2. We observed that blockade of TRAIL on the NK cells was only able to reduce killing of HSC in selected cases but not in the whole cohort, suggesting other levels of regulation. Moreover TRAIL ligand (SuperKillerTRAIL) treatment of primary HSC did not induce a degree of apoptosis commensurate with their high expression of the death-inducing receptor TRAIL-R2. We therefore probed the expression of the inhibitory receptors TRAIL-R3 and R4. We found expression of these receptors on primary human HSC both ex vivo and after in vitro culture. The level of expression of TRAIL-R4 showed a remarkably strong correlation with the susceptibility of primary HSC to undergo apoptosis. Furthermore, blockade of these inhibitory receptors rendered primary HSC more susceptible to apoptosis by SuperKillerTRAIL and by TRAIL-expressing NK cells. Our results are the first to demonstrate a functional role for TRAIL- R3 and -R4 in regulating susceptibility to apoptosis in primary cells. These novel findings will help us to define potential biomarkers and therapeutic targets for liver fibrosis

    Interferon Alpha Induces Sustained Changes in NK Cell Responsiveness to Hepatitis B Viral Load Suppression In Vivo

    Get PDF
    This work was supported by funding from The NIHR Academic Clinical Fellowship scheme and a Wellcome Trust Clinical Research Training fellowship (107389/Z/15/Z) awarded to USG; a Wellcome Trust Senior Investigator award (101848/Z/ 13/Z) to MKM and a Barts and The London Charity award (No. 723/1795) to PTFK

    Area-level deprivation and adiposity in children: is the relationship linear?

    Get PDF
    OBJECTIVE: It has been suggested that childhood obesity is inversely associated with deprivation, such that the prevalence is higher in more deprived groups. However, comparatively few studies actually use an area-level measure of deprivation, limiting the scope to assess trends in the association with obesity for this indicator. Furthermore, most assume a linear relationship. Therefore, the aim of this study was to investigate associations between area-level deprivation and three measures of adiposity in children: body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR). DESIGN: This is a cross-sectional study in which data were collected on three occasions a year apart (2005-2007). SUBJECTS: Data were available for 13,333 children, typically aged 11-12 years, from 37 schools and 542 lower super-output areas (LSOAs). MEASURES: Stature, mass and WC. Obesity was defined as a BMI and WC exceeding the 95th centile according to British reference data. WHtR exceeding 0.5 defined obesity. The Index of Multiple Deprivation affecting children (IDACI) was used to determine area-level deprivation. RESULTS: Considerable differences in the prevalence of obesity exist between the three different measures. However, for all measures of adiposity the highest probability of being classified as obese is in the middle of the IDACI range. This relationship is more marked in girls, such that the probability of being obese for girls living in areas at the two extremes of deprivation is around half that at the peak, occurring in the middle. CONCLUSION: These data confirm the high prevalence of obesity in children and suggest that the relationship between obesity and residential area-level deprivation is not linear. This is contrary to the 'deprivation theory' and questions the current understanding and interpretation of the relationship between obesity and deprivation in children. These results could help make informed decisions at the local level

    TRAIL regulatory receptors constrain human hepatic stellate cell apoptosis

    Get PDF
    This work was funded by UCLH NIHR BRC (sample collection), Wellcome Trust Investigator award (MKM) and Clinical Research Training Fellowship (USG); Medical Research Council grant (MKM) and Clinician Scientist Fellowship (DP); EASL fellowship (IO); National Health and Medical Research Council Australia (KPS)

    Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-like Universe

    Full text link
    We expose the scenarios of primordial baryon-photon plasma evolution within the framework of the Milne-like universe models. Recently, such models find a second wind and promise an inflation-free solution of a lot of cosmological puzzles including the cosmological constant one. Metric tensor perturbations are considered using the five-vectors theory of gravity admitting the Friedmann equation satisfied up to some constant. The Cosmic Microwave Background (CMB) spectrum is calculated qualitatively.Comment: 20 page

    An assessment of the usefulness of a rapid immuno-chromatographic test, "Determine™ malaria pf" in evaluation of intervention measures in forest villages of central India

    Get PDF
    BACKGROUND: Plasmodium falciparum malaria, is a major health problem in forested tribal belt of central India. Rapid and accurate methods are needed for the diagnosis of P. falciparum. We performed a blinded evaluation of the recently introduced Determine™ malaria pf test (Abbott, Laboratories, Japan) compared with microscopy and splenomegaly in children in epidemic prone areas of district Mandla to assess the impact of intervention measures. METHODS: Children aged 2–10 yrs with and without fever were examined for spleen enlargement by medical specialist by establishing a mobile field clinic. From these children thick blood smears were prepared from finger prick and read by a technician. Simultaneously, rapid tests were performed by a field lab attendant. The figures for specificity, sensitivity and predictive values were calculated using microscopy as gold standard. RESULTS: In all 349 children were examined. The sensitivity and specificity for Determine rapid diagnostic test were 91 and 80% respectively. The positive predictive values (PPV), negative predictive values (NPV) and accuracy of the test were respectively 79, 91 and 85%. On the contrary, the sensitivity and specificity of spleen in detecting malaria infection were 57 and 74 % respectively with PPV of 73%, NPV 59 % and an accuracy of 65%. CONCLUSIONS: Determine™ malaria rapid diagnostic test is easier and quicker to perform and has other advantages over microscopy in not requiring prior training of personnel or quality control. Thus, highlighting the usefulness of a rapid antigen test in assessing prevailing malaria situation in remote areas

    Multiplex quantitative PCR for single-reaction genetically modified (GM) plant detection and identification of false-positive GM plants linked to Cauliflower mosaic virus (CaMV) infection.

    Get PDF
    BACKGROUND:Most genetically modified (GM) plants contain a promoter, P35S, from the plant virus, Cauliflower mosaic virus (CaMV), and many have a terminator, TNOS, derived from the bacterium, Agrobacterium tumefaciens. Assays designed to detect GM plants often target the P35S and/or TNOS DNA sequences. However, because the P35S promoter is derived from CaMV, these detection assays can yield false-positives from non-GM plants infected by this naturally-occurring virus. RESULTS:Here we report the development of an assay designed to distinguish CaMV-infected plants from GM plants in a single multiplexed quantitative PCR (qPCR) reaction. Following initial testing and optimization via PCR and singleplex-to-multiplex qPCR on both plasmid and plant DNA, TaqMan qPCR probes with different fluorescence wavelengths were designed to target actin (a positive-control plant gene), P35S, P3 (a CaMV-specific gene), and TNOS. We tested the specificity of our quadruplex qPCR assay using different DNA extracts from organic watercress and both organic and GM canola, all with and without CaMV infection, and by using commercial and industrial samples. The limit of detection (LOD) of each target was determined to be 1% for actin, 0.001% for P35S, and 0.01% for both P3 and TNOS. CONCLUSIONS:This assay was able to distinguish CaMV-infected plants from GM plants in a single multiplexed qPCR reaction for all samples tested in this study, suggesting that this protocol is broadly applicable and readily transferrable to any interested parties with a qPCR platform

    Metabolite profiling of Dioscorea (yam) species reveals underutilised biodiversity and renewable sources for high-value compounds

    Get PDF
    Yams (Dioscorea spp.) are a multispecies crop with production in over 50 countries generating ~50 MT of edible tubers annually. The long-term storage potential of these tubers is vital for food security in developing countries. Furthermore, many species are important sources of pharmaceutical precursors. Despite these attributes as staple food crops and sources of high-value chemicals, Dioscorea spp. remain largely neglected in comparison to other staple tuber crops of tropical agricultural systems such as cassava (Manihot esculenta) and sweet potato (Ipomoea batatas). To date, studies have focussed on the tubers or rhizomes of Dioscorea, neglecting the foliage as waste. In the present study metabolite profiling procedures, using GC-MS approaches, have been established to assess biochemical diversity across species. The robustness of the procedures was shown using material from the phylogenetic clades. The resultant data allowed separation of the genotypes into clades, species and morphological traits with a putative geographical origin. Additionally, we show the potential of foliage material as a renewable source of high-value compounds

    The detection of the imprint of filaments on cosmic microwave background lensing

    Full text link
    Galaxy redshift surveys, such as 2dF, SDSS, 6df, GAMA and VIPERS, have shown that the spatial distribution of matter forms a rich web, known as the cosmic web. The majority of galaxy survey analyses measure the amplitude of galaxy clustering as a function of scale, ignoring information beyond a small number of summary statistics. Since the matter density field becomes highly non-Gaussian as structure evolves under gravity, we expect other statistical descriptions of the field to provide us with additional information. One way to study the non-Gaussianity is to study filaments, which evolve non-linearly from the initial density fluctuations produced in the primordial Universe. In our study, we report the first detection of CMB (Cosmic Microwave Background) lensing by filaments and we apply a null test to confirm our detection. Furthermore, we propose a phenomenological model to interpret the detected signal and we measure how filaments trace the matter distribution on large scales through filament bias, which we measure to be around 1.5. Our study provides a new scope to understand the environmental dependence of galaxy formation. In the future, the joint analysis of lensing and Sunyaev-Zel'dovich observations might reveal the properties of `missing baryons', the vast majority of the gas which resides in the intergalactic medium and has so far evaded most observations

    Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism.

    Get PDF
    Background: Mounting evidence suggests that nutritional exposures during pregnancy influence the fetal epigenome, and that these epigenetic changes can persist postnatally, with implications for disease risk across the life course. Methods: We review human intergenerational studies using a three-part search strategy. Search 1 investigates associations between preconceptional or pregnancy nutritional exposures, focusing on one-carbon metabolism, and offspring DNA methylation. Search 2 considers associations between offspring DNA methylation at genes found in the first search and growth-related, cardiometabolic and cognitive outcomes. Search 3 isolates those studies explicitly linking maternal nutritional exposure to offspring phenotype via DNA methylation. Finally, we compile all candidate genes and regions of interest identified in the searches and describe their genomic locations, annotations and coverage on the Illumina Infinium Methylation beadchip arrays. Results: We summarize findings from the 34 studies found in the first search, the 31 studies found in the second search and the eight studies found in the third search. We provide details of all regions of interest within 45 genes captured by this review. Conclusions: Many studies have investigated imprinted genes as priority loci, but with the adoption of microarray-based platforms other candidate genes and gene classes are now emerging. Despite a wealth of information, the current literature is characterized by heterogeneous exposures and outcomes, and mostly comprise observational associations that are frequently underpowered. The synthesis of current knowledge provided by this review identifies research needs on the pathway to developing possible early life interventions to optimize lifelong health
    corecore