12 research outputs found
Metabolic acidosis up-regulates PTH/PTHrP receptors in UMR 106-01 osteoblast-like cells
Metabolic acidosis up-regulates PTH/PTHrP receptors in UMR 106-01 osteoblast-like cells.BackgroundMetabolic acidosis results in skeletal demineralization by multiple mechanisms. One of these involves the inorganic phase of bone by which hydrogen ion is buffered by bone carbonate. In addition, the cellular components of bone participate by the induction and repression of several skeletal genes. Previous studies have suggested that the action of parathyroid hormone (PTH), a major regulator of bone turnover, might be altered by acidosis. The present studies were designed to test directly, in vitro, whether acidosis altered the effects of PTH in UMR 106-01 osteoblast-like cells.MethodsStudies were conducted in confluent cultures of UMR 106-01 cells in modified Eagle's medium (MEM) with 5% fetal bovine serum (FBS) at pH values varying from 7.4 to 7.1 by addition of HCl. After time periods of 4 to 48 hours, cells were tested for cyclic AMP generation in response to PTH. PTH binding and PTH/PTHrP receptor mRNA levels were determined by radioligand binding assay and Northern analysis respectively.ResultsAfter 48 hours, decreases in pH from 7.4 to 7.1 resulted in a progressive increase in PTH-stimulated cyclic-AMP generation from 1978 ± 294 to 4968 ± 929 pmol/culture/5 min (P < 0.05). Basal cyclic AMP concentrations were unchanged. PTH binding increased 1.5- to twofold. Competitive inhibition binding revealed an increase in receptor number supported by up-regulation of PTH/PTHrP receptor mRNA up to twofold from control levels.ConclusionsThese findings demonstrate that metabolic acidosis stimulates the response to PTH in UMR 106-01 osteoblast-like cells by a mechanism that involves an increase in the levels of PTH/PTHrP receptor mRNA. Thus, the skeletal response to acidosis that includes an increase in bone resorption may result, at least in part, from an increase in PTH/PTHrP receptors leading to an enhanced effect of PTH on bone
Incidence of De Novo Post-Transplant Malignancies in Thai Adult Kidney Transplant Recipients: A Single-Center, Population-Controlled, Retrospective Cohort Study at the Highest Volume Kidney Transplant Center in Thailand
Kidney transplant recipients (KTRs) are at increased risk of developing de novo post-transplant malignancies (PTMs), with regional differences in types with excess risk compared to the general population. A single-center, population-controlled, retrospective cohort study was conducted at a tertiary care center in Thailand among all adults who underwent their first kidney transplant from 1986 to 2018. Standardized incidence ratios (SIRs) of malignancy by age, sex, and place of residence were obtained using data from the National Cancer Registry of Thailand as population control. There were 2,024 KTRs [mean age, 42.4 years (SD 11.4); female patients, 38.6%] during 16,495 person-years at risk. Of these, 125 patients (6.2%) developed 133 de novo PTMs. The SIR for all PTMs was 3.85 (95% CI 3.22, 4.56), and for pooled solid and hematologic PTMs, it was 3.32 (95% CI 2.73, 3.99). Urothelial malignancies had the largest excess risk, especially in women [female SIR 114.7 (95% CI 66.8, 183.6); male SIR 17.5 (95% CI 8.72, 31.2)]. The next two most common cancers were non-Hodgkin’s lymphoma and skin cancer [SIR 20.3 (95% CI 13.6, 29.1) and 24.7 (95% CI 15.3-37.8), respectively]. Future studies are needed to identify the risk factors and assess the need for systematic screening among PTMs with excess risk in KTRs
Proteomic Profiles of Mesenchymal Stem Cells Induced by a Liver Differentiation Protocol
The replacement of disease hepatocytes and the stimulation of endogenous or exogenous regeneration by human mesenchymal stem cells (MSCs) are promising candidates for liver-directed cell therapy. In this study, we isolated MSCs from adult bone marrow by plastic adhesion and induced differentiation with a liver differentiation protocol. Western blot analyses were used to assess the expression of liver-specific markers. Next, MSC-specific proteins were analyzed with two-dimensional (2D) gel electrophoresis and peptide mass fingerprinting matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS). To confirm the results from the proteomic study, semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed. We demonstrated that MSCs treated with the liver differentiation protocol expressed significantly more albumin, CK19 and CK20, than did undifferentiated cells. In addition the results of proteomic study demonstrated increases expression of FEM1B, PSMC2 and disulfide-isomerase A3 in MSCs treated with the liver differentiation protocol. These results from proteomic profiling will not only provide insight into the global responses of MSCs to hepatocyte differentiation, but will also lead to in-depth studies on the mechanisms of proteomic changes in MSCs
Phosphate and Cardiovascular Disease beyond Chronic Kidney Disease and Vascular Calcification
Phosphate is essential for life but its accumulation can be detrimental. In end-stage renal disease, widespread vascular calcification occurs as a result of chronic phosphate load. The accumulation of phosphate is likely to occur long before the rise in serum phosphate above the normal range since several observational studies in both general population and early-stage CKD patients have identified the relationship between high-normal serum phosphate and adverse cardiovascular outcomes. Consumption of food high in phosphate increases both fasting and postprandial serum phosphate and habitual intake of high phosphate diet is associated with aging, cardiac hypertrophy, endothelial dysfunction, and subclinical atherosclerosis. The decline in renal function and dietary phosphate load can increase circulating fibroblast growth factor-23 (FGF-23) which may have a direct impact on cardiomyocytes. Increased FGF-23 levels in both CKD and general populations are associated with left ventricular hypertrophy, congestive heart failure, atrial fibrillation, and mortality. Increased extracellular phosphate directly affects endothelial cells causing cell apoptosis and vascular smooth muscle cells (VSMCs) causing transformation to osteogenic phenotype. Excess of calcium and phosphate in the circulation can promote the formation of protein-mineral complex called calciprotein particles (CPPs). In CKD, these CPPs contain less calcification inhibitors, induce inflammation, and promote VSMC calcification
Phosphate and Cardiovascular Disease beyond Chronic Kidney Disease and Vascular Calcification
Phosphate is essential for life but its accumulation can be detrimental. In end-stage renal disease, widespread vascular calcification occurs as a result of chronic phosphate load. The accumulation of phosphate is likely to occur long before the rise in serum phosphate above the normal range since several observational studies in both general population and early-stage CKD patients have identified the relationship between high-normal serum phosphate and adverse cardiovascular outcomes. Consumption of food high in phosphate increases both fasting and postprandial serum phosphate and habitual intake of high phosphate diet is associated with aging, cardiac hypertrophy, endothelial dysfunction, and subclinical atherosclerosis. The decline in renal function and dietary phosphate load can increase circulating fibroblast growth factor-23 (FGF-23) which may have a direct impact on cardiomyocytes. Increased FGF-23 levels in both CKD and general populations are associated with left ventricular hypertrophy, congestive heart failure, atrial fibrillation, and mortality. Increased extracellular phosphate directly affects endothelial cells causing cell apoptosis and vascular smooth muscle cells (VSMCs) causing transformation to osteogenic phenotype. Excess of calcium and phosphate in the circulation can promote the formation of protein-mineral complex called calciprotein particles (CPPs). In CKD, these CPPs contain less calcification inhibitors, induce inflammation, and promote VSMC calcification
Role of Parathyroid Hormone and Parathyroid Hormone-Related Protein in Protein-Energy Malnutrition
Parathyroid hormone (PTH) is an endocrine peptide found exclusively in the parathyroid glands, whereas parathyroid hormone-related protein (PTHrP) is expressed in a wide range of tissues and organs and exerts endocrine, paracrine, and autocrine actions. PTH and PTHrP have a similar homology, sharing the initial 13 amino acid residues at the N-terminus and binding to the same type 1 PTH receptor (PTH1R), which regulates calcium homeostasis. An abnormal increase in PTH production can occur in primary and secondary hyperparathyroidism, whereas PTHrP can be produced in large quantities by malignant cancer cells from solid organs. In addition to increased bone resorption and hypercalcemia, recent evidence suggests that excess PTH and PTHrP can result in protein-energy wasting, malnutrition, and cachexia. Through binding to PTH1R and activation of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A in white adipose tissue, PTH and PTHrP can stimulate the expression of thermogenic genes causing adipose tissue browning. This change results in an increase in resting energy expenditure, loss of muscle and fat mass, and weight loss. These findings provide a mechanistic link for the long-established relationship between hyperparathyroidism and myopathy, as well as cancer and cachexia. The purpose of this review is to provide a summary of the emerging evidence from both experimental and clinical studies on the role of PTH and PTHrP in protein-energy malnutrition
The impact of accessibility to non-calcium-based phosphate binders and calcimimetics on mineral outcomes in patients receiving maintenance hemodialysis: A 10-year retrospective analysis of real-world data.
IntroductionHyperphosphatemia and hyperparathyroidism are common in end-stage kidney disease and are associated with poor outcomes. In addition to adequate dialysis, medications are usually required for optimum control of serum phosphate and parathyroid hormone (PTH) levels. The use of calcium-based phosphate binders (CBPBs) and active vitamin D is associated with an increase in serum calcium and worsening vascular calcification. To overcome these limitations, non-calcium-based phosphate binders (NCBPBs) and calcimimetics have been developed. However, the coverage for these new medications remains limited in several parts of the world due to the lack of patient-level outcome data and cost. The present study examined the differences in mineral outcomes between two main categories of healthcare programs that provided different coverage for medications used to control mineral and bone disorders (MBD). The Social Security/Universal Coverage (SS/UC) program covered only CBPBs and active vitamin D, whereas the Civil Servant/State Enterprise (CS/SE) program provided coverage of CBPBs, active vitamin D, NCBPBs, and calcimimetics.MethodsThis 10-year retrospective cohort study examined the differences in mineral outcomes between two healthcare programs in maintenance hemodialysis patients. The differences in serum calcium, phosphate, and PTH levels, as well as the aortic arch calcification score, were analyzed according to dialysis vintage by linear mixed-effects regression analyses. The difference in the composite outcome of severe hyperparathyroidism and parathyroidectomy was analyzed by the Cox-proportional hazard regression model.Results714 patients were included in the analyses (full cohort). Of these patients, 563 required at least one type of medication to control MBD (MBD medication subgroup). Serum calcium, phosphate, and the proportions of patients with hypercalcemia and hyperphosphatemia were substantially higher in the SS/UC group compared with the CS/SE group after appropriate adjustments for confounders in both the full cohort and the MBD medication subgroup. These findings were confirmed in propensity-score matched analyses. Higher parathyroid hormone levels and a higher rate of the composite endpoint of severe hyperparathyroidism and parathyroidectomy were also observed in the SS/UC group. A more rapid progression of aortic arch calcification was suggested in the SS/UC group, but between-group changes were not significant.ConclusionPatients under the healthcare program that did not cover the use of NCBPBs and calcimimetics showed higher serum calcium and phosphate levels and a more rapid progression of hyperparathyroidism. The difference in the progression of vascular calcification could not be confirmed in the present study
Regulation of PTH1 receptor expression by uremic ultrafiltrate in UMR 106–01 osteoblast-like cells
Regulation of PTH1 receptor expression by uremic ultrafiltrate in UMR 106–01 osteoblast-like cells.BackgroundHomologous down-regulation/desensitization of the parathyroid hormone receptor (PTH1R)/adenylate cyclase system has been demonstrated in uremia, and may contribute to parathyroid hormone (PTH) resistance; however, additional studies have shown that parathyroidectomy fails to normalize the down-regulation of the PTH1R. The present studies were designed to test directly, in vitro, the hypothesis that factors circulating in the uremic environment, other than PTH, decrease the response of osteoblastic cells to PTH.MethodsStudies were conducted in confluent cultures of UMR 106–01 osteoblast-like cells. Uremic ultrafiltrate (UUF) was obtained from patients on hemodialysis. Cells were exposed to media containing 50% uremic ultrafiltrate for periods of up to 72hours. Control cultures were exposed to a buffered salt solution containing a comparable ionic composition to that of the UUF. PTH-stimulated cyclic adenosine monophosphate (cAMP) generation was determined by radioimmunoassay (RIA), PTH binding and PTH1R mRNA levels were determined by radioligand binding and Northern analysis, respectively.ResultsPTH-stimulated cAMP generation from cultures treated with uremic ultrafiltrate for 48hours was 1385.8 +/- 183.2 pmol/culture/5 minutes, whereas control cultures generated 2389.5 +/- 271 pmol cAMP/culture/5 minutes (P < 0.05). PTH binding was decreased by 30% in cultures incubated with UUF as compared to controls. The decrease in binding induced by UUF was accompanied by a decrease in PTH1R mRNA levels.ConclusionThese findings demonstrate that factors present in UUF decrease PTH-stimulated cAMP generation by a mechanism that involves a decrease in the levels of PTH1R mRNA levels. Thus, the skeletal resistance to PTH in the setting of chronic kidney disease, may be explained, at least in part, by circulating factors other than PTH
Years of life lost and long-term outcomes due to glomerular disease in a Southeast Asian Cohort
Abstract Death and end-stage kidney disease (ESKD) are major outcomes of glomerular disease. (GD) The years of potential life lost (YLL) may provide additional insight into the disease burden beyond death rates. There is limited data on premature mortality in GD. In this retrospective observational cohort study, we evaluated the mortality, ESKD rates, and YLL in Thais with biopsy-proven GD. The mortality and combined outcome rates were determined by log-rank test and ESKD by using a competing risk model. YLL and premature life lost before age 60 were calculated for different GD based on the life expectancy of the Thai population. Patients with GD (n = 949) were followed for 5237 patient years. The death rate and ESKD rates (95%CI) were 4.2 (3.7–4.9) and 3.3 (2.9–3.9) per 100 patient-years, respectively. Paraprotein-related kidney disease had the highest death rate, and diabetic nephropathy had the highest ESKD rate. Despite not having the highest death rate, lupus nephritis (LN) had the highest YLL (41% of all GD) and premature loss of life before age 60. In conclusion, YLL provided a different disease burden assessment compared to mortality rates and identified LN as the major cause of premature death due to GD in a Southeast Asian cohort