3,771 research outputs found
Proof of the Boltzmann-Sinai Ergodic Hypothesis for Typical Hard Disk Systems
We consider the system of () hard disks of masses and
radius in the flat unit torus . We prove the ergodicity
(actually, the B-mixing property) of such systems for almost every selection
of the outer geometric parameters.Comment: 58 page
Net worth and housing equity in retirement
This paper documents the trends in the life-cycle profiles of net worth and housing equity between 1983 and 2004. The net worth of older households significantly increased during the housing boom of recent years. However, net worth grew by more than housing equity, in part because other assets also appreciated at the same time. Moreover, the younger elderly offset rising house prices by increasing their housing debt, and used some of the proceeds to invest in other assets. We also consider how much of their housing equity older households can actually tap, using reverse mortgages. This fraction is lower at younger ages, such that young retirees can consume less than half of their housing equity. These results imply that âconsumableâ net worth is smaller than standard calculations of net worth. JEL Classification: G11, E2
Frobenius problem and the covering radius of a lattice
Let and let be relatively prime integers.
Frobenius number of this -tuple is defined to be the largest positive
integer that cannot be expressed as where
are non-negative integers. The condition that implies that
such number exists. The general problem of determining the Frobenius number
given and is NP-hard, but there has been a number of
different bounds on the Frobenius number produced by various authors. We use
techniques from the geometry of numbers to produce a new bound, relating
Frobenius number to the covering radius of the null-lattice of this -tuple.
Our bound is particularly interesting in the case when this lattice has equal
successive minima, which, as we prove, happens infinitely often.Comment: 12 pages; minor revisions; to appear in Discrete and Computational
Geometr
On a Problem in Diophantine Approximation
We prove new results, related to the Littlewood and Mixed Littlewood
conjectures in Diophantine approximation.Comment: 16 page
- âŠ