1,528 research outputs found
Non-Abelian Discrete Flavor Symmetries on Orbifolds
We study non-Abelian flavor symmetries on orbifolds, and .
Our extra dimensional models realize , , and
including and . In addition, one can also realize
their subgroups such as , , etc. The flavor symmetry can be
realized on both and orbifolds.Comment: 16 page
Fluctuation theorem for constrained equilibrium systems
We discuss the fluctuation properties of equilibrium chaotic systems with
constraints such as iso-kinetic and Nos\'e-Hoover thermostats. Although the
dynamics of these systems does not typically preserve phase-space volumes, the
average phase-space contraction rate vanishes, so that the stationary states
are smooth. Nevertheless finite-time averages of the phase-space contraction
rate have non-trivial fluctuations which we show satisfy a simple version of
the Gallavotti-Cohen fluctuation theorem, complementary to the usual
fluctuation theorem for non-equilibrium stationary states, and appropriate to
constrained equilibrium states. Moreover we show these fluctuations are
distributed according to a Gaussian curve for long-enough times. Three
different systems are considered here, namely (i) a fluid composed of particles
interacting with Lennard-Jones potentials; (ii) a harmonic oscillator with
Nos\'e-Hoover thermostatting; (iii) a simple hyperbolic two-dimensional map.Comment: To appear in Phys. Rev.
Kaluza-Klein Higher Derivative Induced Gravity
The existence and stability analysis of an inflationary solution in a
-dimensional anisotropic induced gravity is presented in this paper.
Nontrivial conditions in the field equations are shown to be compatible with a
cosmological model in which the 4-dimension external space evolves
inflationary, while, the D-dimension internal one is static. In particular,
only two additional constraints on the coupling constants are derived from the
abundant field equations and perturbation equations. In addition, a compact
formula for the non-redundant 4+D dimensional Friedmann equation is also
derived for convenience. Possible implications are also discussed in this
paper.Comment: 13 pages, typos/errors corrected, three additional appendices adde
Implications of MicroRNAs in the treatment of gefitinib-resistant non-small cell lung cancer
2015-2016 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Entropy Bound and Causality Violation in Higher Curvature Gravity
In any quantum theory of gravity we do expect corrections to Einstein gravity
to occur. Yet, at fundamental level, it is not apparent what the most relevant
corrections are. We argue that the generic curvature square corrections present
in lower dimensional actions of various compactified string theories provide a
natural passage between the classical and quantum realms of gravity. The
Gauss-Bonnet and gravities, in particular, provide concrete
examples in which inconsistency of a theory, such as, a violation of
microcausality, and a classical limit on black hole entropy are correlated. In
such theories the ratio of the shear viscosity to the entropy density,
, can be smaller than for a boundary conformal field theory with
Einstein gravity dual. This result is interesting from the viewpoint that the
nuclear matter or quark-gluon plasma produced (such as at RHIC) under extreme
densities and temperatures may violate the conjectured bound , {\it albeit} marginally so.Comment: 23 pages, several eps figures; minor changes, references added,
published versio
E6,7,8 Magnetized Extra Dimensional Models
We study 10D super Yang-Mills theory with the gauge groups , and
. We consider the torus/orbifold compacfitication with magnetic fluxes and
Wilson lines. They lead to 4D interesting models with three families of quarks
and leptons, whose profiles in extra dimensions are quasi-localized because of
magnetic fluxes.Comment: 17 pages, 1 figur
Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties
Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm− 1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film
A Detailed Analysis of One-loop Neutrino Masses from the Generic Supersymmetric Standard Model
In the generic supersymmetric standard model which had no global symmetry
enforced by hand, lepton number violation is a natural consequence.
Supersymmetry, hence, can be considered the source of experimentally demanded
beyond standard model properties for the neutrinos. With an efficient
formulation of the model, we perform a comprehensive detailed analysis of all
one-loop contributions to neutrino masses.Comment: 27 pages Revtex, no figur
Drag force in a strongly coupled anisotropic plasma
We calculate the drag force experienced by an infinitely massive quark
propagating at constant velocity through an anisotropic, strongly coupled N=4
plasma by means of its gravity dual. We find that the gluon cloud trailing
behind the quark is generally misaligned with the quark velocity, and that the
latter is also misaligned with the force. The drag coefficient can be
larger or smaller than the corresponding isotropic value depending on the
velocity and the direction of motion. In the ultra-relativistic limit we find
that generically . We discuss the conditions under which this
behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference
Dynamics of Baryons from String Theory and Vector Dominance
We consider a holographic model of QCD from string theory, a la Sakai and
Sugimoto, and study baryons. In this model, mesons are collectively realized as
a five-dimensional \ Yang-Mills field and baryons
are classically identified as solitons with a unit Pontryagin number
and electric charges. The soliton is shown to be very small in the large
't Hooft coupling limit, allowing us to introduce an effective field . Its coupling to the mesons are dictated by the soliton structure, and
consists of a direct magnetic coupling to the field strength as well
as a minimal coupling to the gauge field. Upon the dimensional
reduction, this effective action reproduces all interaction terms between
nucleons and an infinite tower of mesons in a manner consistent with the large
expansion. We further find that all electromagnetic interactions, as
inferred from the same effective action via a holographic prescription, are
mediated by an infinite tower of vector mesons, rendering the baryon
electromagnetic form factors completely vector-dominated as well. We estimate
nucleon-meson couplings and also the anomalous magnetic moments, which compare
well with nature.Comment: 65pages, 3 figures, vector mesons and axial-vector mesons are now
canonically normalized (comparisons with data and conclusions unaffected
- …