37 research outputs found

    Nonparametric Linear Feature Learning in Regression Through Regularisation

    Full text link
    Representation learning plays a crucial role in automated feature selection, particularly in the context of high-dimensional data, where non-parametric methods often struggle. In this study, we focus on supervised learning scenarios where the pertinent information resides within a lower-dimensional linear subspace of the data, namely the multi-index model. If this subspace were known, it would greatly enhance prediction, computation, and interpretation. To address this challenge, we propose a novel method for linear feature learning with non-parametric prediction, which simultaneously estimates the prediction function and the linear subspace. Our approach employs empirical risk minimisation, augmented with a penalty on function derivatives, ensuring versatility. Leveraging the orthogonality and rotation invariance properties of Hermite polynomials, we introduce our estimator, named RegFeaL. By utilising alternative minimisation, we iteratively rotate the data to improve alignment with leading directions and accurately estimate the relevant dimension in practical settings. We establish that our method yields a consistent estimator of the prediction function with explicit rates. Additionally, we provide empirical results demonstrating the performance of RegFeaL in various experiments.Comment: 42 pages, 5 figure

    Approximate Heavy Tails in Offline (Multi-Pass) Stochastic Gradient Descent

    Full text link
    A recent line of empirical studies has demonstrated that SGD might exhibit a heavy-tailed behavior in practical settings, and the heaviness of the tails might correlate with the overall performance. In this paper, we investigate the emergence of such heavy tails. Previous works on this problem only considered, up to our knowledge, online (also called single-pass) SGD, in which the emergence of heavy tails in theoretical findings is contingent upon access to an infinite amount of data. Hence, the underlying mechanism generating the reported heavy-tailed behavior in practical settings, where the amount of training data is finite, is still not well-understood. Our contribution aims to fill this gap. In particular, we show that the stationary distribution of offline (also called multi-pass) SGD exhibits 'approximate' power-law tails and the approximation error is controlled by how fast the empirical distribution of the training data converges to the true underlying data distribution in the Wasserstein metric. Our main takeaway is that, as the number of data points increases, offline SGD will behave increasingly 'power-law-like'. To achieve this result, we first prove nonasymptotic Wasserstein convergence bounds for offline SGD to online SGD as the number of data points increases, which can be interesting on their own. Finally, we illustrate our theory on various experiments conducted on synthetic data and neural networks.Comment: In Neural Information Processing Systems (NeurIPS), Spotlight Presentation, 202

    SGD with Clipping is Secretly Estimating the Median Gradient

    Full text link
    There are several applications of stochastic optimization where one can benefit from a robust estimate of the gradient. For example, domains such as distributed learning with corrupted nodes, the presence of large outliers in the training data, learning under privacy constraints, or even heavy-tailed noise due to the dynamics of the algorithm itself. Here we study SGD with robust gradient estimators based on estimating the median. We first consider computing the median gradient across samples, and show that the resulting method can converge even under heavy-tailed, state-dependent noise. We then derive iterative methods based on the stochastic proximal point method for computing the geometric median and generalizations thereof. Finally we propose an algorithm estimating the median gradient across iterations, and find that several well known methods - in particular different forms of clipping - are particular cases of this framework

    Uniform-in-Time Wasserstein Stability Bounds for (Noisy) Stochastic Gradient Descent

    Full text link
    Algorithmic stability is an important notion that has proven powerful for deriving generalization bounds for practical algorithms. The last decade has witnessed an increasing number of stability bounds for different algorithms applied on different classes of loss functions. While these bounds have illuminated various properties of optimization algorithms, the analysis of each case typically required a different proof technique with significantly different mathematical tools. In this study, we make a novel connection between learning theory and applied probability and introduce a unified guideline for proving Wasserstein stability bounds for stochastic optimization algorithms. We illustrate our approach on stochastic gradient descent (SGD) and we obtain time-uniform stability bounds (i.e., the bound does not increase with the number of iterations) for strongly convex losses and non-convex losses with additive noise, where we recover similar results to the prior art or extend them to more general cases by using a single proof technique. Our approach is flexible and can be generalizable to other popular optimizers, as it mainly requires developing Lyapunov functions, which are often readily available in the literature. It also illustrates that ergodicity is an important component for obtaining time-uniform bounds -- which might not be achieved for convex or non-convex losses unless additional noise is injected to the iterates. Finally, we slightly stretch our analysis technique and prove time-uniform bounds for SGD under convex and non-convex losses (without additional additive noise), which, to our knowledge, is novel.Comment: 49 pages, NeurIPS 202

    Efficient Bayesian Model Selection in PARAFAC via Stochastic Thermodynamic Integration

    Get PDF
    International audienceParallel factor analysis (PARAFAC) is one of the most popular tensor factorization models. Even though it has proven successful in diverse application fields, the performance of PARAFAC usually hinges up on the rank of the factorization, which is typically specified manually by the practitioner. In this study, we develop a novel parallel and distributed Bayesian model selection technique for rank estimation in large-scale PARAFAC models. The proposed approach integrates ideas from the emerging field of stochastic gradient Markov Chain Monte Carlo, statistical physics, and distributed stochastic optimization. As opposed to the existing methods, which are based on some heuristics, our method has a clear mathematical interpretation, and has significantly lower computational requirements, thanks to data subsampling and parallelization. We provide formal theoretical analysis on the bias induced by the proposed approach. Our experiments on synthetic and large-scale real datasets show that our method is able to find the optimal model order while being significantly faster than the state-of-the-art
    corecore