5,367 research outputs found
Effects of 3-d and 4-d-transition metal substitutional impurities on the electronic properties of CrO2
We present first-principles based density functional theory calculations of
the electronic and magnetic structure of CrO2 with 3d (Ti through Cu) and 4d
(Zr through Ag) substitutional impurities. We find that the half-metallicity of
CrO2 remains intact for all of the calculated substitutions. We also observe
two periodic trends as a function of the number of valence electrons: if the
substituted atom has six or fewer valence electrons (Ti-Cr or Zr-Mo), the
number of down spin electrons associated with the impurity ion is zero,
resulting in ferromagnetic (FM) alignment of the impurity magnetic moment with
the magnetization of the CrO2 host. For substituent atoms with eight to ten
(Fe-Ni or Ru-Pd with the exception of Ni), the number of down spin electrons
contributed by the impurity ion remains fixed at three as the number
contributed to the majority increases from one to three resulting in
antiferromagnetic (AFM) alignment between impurity moment and host
magnetization. The origin of this variation is the grouping of the impurity
states into 3 states with approximate "t2g" symmetry and 2 states with
approximate "eg" symmetry. Ni is an exception to the rule because a
Jahn-Teller-like distortion causes a splitting of the Ni eg states. For Mn and
Tc, which have 8 valence electrons, the zero down spin and 3 down spin
configurations are very close in energy. For Cu and Ag atoms, which have 11
valence electrons, the energy is minimized when the substituent ion contributes
5 Abstract down-spin electrons. We find that the interatomic exchange
interactions are reduced for all substitutions except for the case of Fe for
which a modest enhancement is calculated for interactions along certain
crystallographic directions.Comment: 26 pages, 10 figures, 2 table
Results of a 24-inch Hybrid Motor Performance Uncertainty Analysis
The subscale (11 and 24-inch) hybrid motors at the Marshall Space Flight Center (MSFC) have been used as versatile and cost effective testbeds for developing new technology. Comparisons between motor configuration, ignition systems, feed systems, fuel formulations, and nozzle materials have been carried out without detailed consideration as to haw "good" the motor performance data were. For the 250,000 lb/thrust motor developed by the Hybrid Propulsion Demonstration Program consortium, this shortcoming is particularly risky because motor performance will likely be used as put of a set of downselect criteria to choose between competing ignition and feed systems under development. This analysis directly addresses that shortcoming by applying uncertainty analysis techniques to the experimental determination of the characteristic velocity, theoretical characteristic velocity, and characteristic velocity efficiency for a 24-inch motor firing. With the adoption of fuel-lined headends, flow restriction, and aft mixing chambers, state of the an 24-inch hybrid motors have become very efficient However, impossibly high combustion efficiencies (some computed as high as 108%) have been measured in some tests with 11-inch motors. This analysis has given new insight into explaining how these efficiencies were measured to be so high, and into which experimental measurements contribute the most to the overall uncertainty
Initial Results from On-Orbit Testing of the Fram Memory Test Experiment on the Fastsat Micro-Satellite
The Memory Test Experiment is a space test of a ferroelectric memory device on a low Earth orbit satellite that launched in November 2010. The memory device being tested is a commercial Ramtron Inc. 512K memory device. The circuit was designed into the satellite avionics and is not used to control the satellite. The test consists of writing and reading data with the ferroelectric based memory device. Any errors are detected and are stored on board the satellite. The data is sent to the ground through telemetry once a day. Analysis of the data can determine the kind of error that was found and will lead to a better understanding of the effects of space radiation on memory systems. The test is one of the first flight demonstrations of ferroelectric memory in a near polar orbit which allows testing in a varied radiation environment. The initial data from the test is presented. This paper details the goals and purpose of this experiment as well as the development process. The process for analyzing the data to gain the maximum understanding of the performance of the ferroelectric memory device is detailed
Guidelines for producing rice using furrow irrigation (1993)
Traditional rice culture in Missouri uses flood water management. Reasons for flooding include efficient growth, rice's poor water stress tolerance and its ability to flourish in submerged soil where many competitive grasses and broadleaf weeds cannot survive. The purpose of this publication is to introduce producers to the furrow-irrigated rice system and help interested individuals decide whether that system has potential for use on their farms
Developing an On-Line Interactive Health Psychology Module.
On-line teaching material in health psychology was developed which ensured a range of students could access appropriate material for their course and level of study. This material has been developed around the concept of smaller 'content chunks' which can be combined into whole units of learning (topics), and ultimately, a module. On the basis of the underlying philosophy that the medium is part of the message, we considered interactivity to be a key element in engaging the student with the material. Consequently, the key aim of this development was to stimulate and engage students, promoting better involvement with the academic material, and hence better learning. It was hoped that this was achieved through the development of material including linked programmes and supporting material, small Java Scripts and basic email, forms and HTML additions. This material is outlined as are some of the interactive activities introduced, and the preliminary student and tutor experience described
Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex
BACKGROUND: Disrupting the balance of histone lysine methylation alters the expression of genes involved in tumorigenesis including proto-oncogenes and cell cycle regulators. Methylation of lysine residues is commonly catalyzed by a family of proteins that contain the SET domain. Here, we report the identification and characterization of the SET domain-containing protein, Smyd2. RESULTS: Smyd2 mRNA is most highly expressed in heart and brain tissue, as demonstrated by northern analysis and in situ hybridization. Over-expressed Smyd2 localizes to the cytoplasm and the nucleus in 293T cells. Although accumulating evidence suggests that methylation of histone 3, lysine 36 (H3K36) is associated with actively transcribed genes, we show that the SET domain of Smyd2 mediates H3K36 dimethylation and that Smyd2 represses transcription from an SV40-luciferase reporter. Smyd2 associates specifically with the Sin3A histone deacetylase complex, which was recently linked to H3K36 methylation within the coding regions of active genes in yeast. Finally, we report that exogenous expression of Smyd2 suppresses cell proliferation. CONCLUSION: We propose that Sin3A-mediated deacetylation within the coding regions of active genes is directly linked to the histone methyltransferase activity of Smyd2. Moreover, Smyd2 appears to restrain cell proliferation, likely through direct modulation of chromatin structure
Automated verification of shape and size properties via separation logic.
Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range of data structures with their associated size properties. To support automatic verification, we design a new entailment checking procedure that can handle well-founded inductive predicates using unfold/fold reasoning. We have proven the soundness and termination of our verification system, and have built a prototype system
Molecular analyses of confiscated shark fins reveal shortcomings of CITES implementations in Germany
A three-ton shipment of dry shark fins was examined by German customs in 2017 leading to the confiscation of 405 kg of potential CITES species. We analyzed a subsample of this material (115 specimens) using DNA sequence-based identification and compared results to morphological screening of CITES species. We found a mixture of CITES regulated (4 of 11 species) and unregulated shark species. Our results demonstrate the difficulties of identifying CITES species morphologically in large fin shipments of mixed species composition. Correct identification of CITES species based on morphology alone may be hindered by missing characters or those altered by drying. We therefore suggest random molecular screening as a uniform approach for German customs authorities to check species composition and identify CITES regulated species in transit shipments.publishedVersio
- …