41 research outputs found

    Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism

    Get PDF
    SignificanceRheumatoid arthritis (RA) is a debilitating chronic inflammatory disease in which symptoms exhibit a strong time-of-day rhythmicity. RA is commonly associated with metabolic disturbance and increased incidence of diabetes and cardiovascular disease, yet the mechanisms underlying this metabolic dysregulation remain unclear. Here, we demonstrate that rhythmic inflammation drives reorganization of metabolic programs in distal liver and muscle tissues. Chronic inflammation leads to mitochondrial dysfunction and dysregulation of fatty acid metabolism, including accumulation of inflammation-associated ceramide species in a time-of-day-dependent manner. These findings reveal multiple points for therapeutic intervention centered on the circadian clock, metabolic dysregulation, and inflammatory signaling

    Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function

    Get PDF
    BACKGROUND: Neurodegeneration in Alzheimer's disease is associated with increased apoptosis and parallels increased levels of amyloid beta, which can induce neuronal apoptosis. Estrogen exposure prior to neurotoxic insult of hippocampal neurons promotes neuronal defence and survival against neurodegenerative insults including amyloid beta. Although all underlying molecular mechanisms of amyloid beta neurotoxicity remain undetermined, mitochondrial dysfunction, including altered calcium homeostasis and Bcl-2 expression, are involved in neurodegenerative vulnerability. RESULTS: In this study, we investigated the mechanism of 17β-estradiol-induced prevention of amyloid beta-induced apoptosis of rat hippocampal neuronal cultures. Estradiol treatment prior to amyloid beta exposure significantly reduced the number of apoptotic neurons and the associated rise in resting intracellular calcium levels. Amyloid beta exposure provoked down regulation of a key antiapoptotic protein, Bcl-2, and resulted in mitochondrial translocation of Bax, a protein known to promote cell death, and subsequent release of cytochrome c. E(2 )pretreatment inhibited the amyloid beta-induced decrease in Bcl-2 expression, translocation of Bax to the mitochondria and subsequent release of cytochrome c. Further implicating the mitochondria as a target of estradiol action, in vivo estradiol treatment enhanced the respiratory function of whole brain mitochondria. In addition, estradiol pretreatment protected isolated mitochondria against calcium-induced loss of respiratory function. CONCLUSION: Therefore, we propose that estradiol pretreatment protects against amyloid beta neurotoxicity by limiting mitochondrial dysfunction via activation of antiapoptotic mechanisms

    Prevalence of physical activity through the practice of sports among adolescents from Portuguese speaking countries

    Full text link
    This study evaluated the prevalence of physical activity through the practice of sports in adolescents from schools in two Brazilian cities and a Portuguese school, and its association with independent variables, such as gender and age. A cross-sectional study was conducted of schoolchildren from two cities in Brazil and one in Portugal. The total study sample was 3694 subjects (1622 males and 1872 females). Physical activity levels were assessed using Baecke's questionnaire. Body weight was measured on electronic scales and stature was measured with a portable wooden stadiometer. Numerical variables were expressed as mean, categorical variables were expressed as percentages and the chi-square test analyzed associations. The prevalence of no sport was high (39.7%), being higher in the Portuguese school than in the Brazilian schools (p < 0.001). Irrespective of being an adolescent in a Brazilian or Portuguese school, boys showed higher engagement in sports practice than girls (p < 0.001). In both, differences were identified between adolescents aged 13 to 15 (P = 0.001) and 16 to 17 (P = 0.001). The prevalence of physical inactivity among schoolchildren from two cities in Brazil and a school in Portugal was high, with the girls practicing less sport than the boys and with this imbalance likely to be higher in adolescents

    Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism

    Get PDF
    SignificanceRheumatoid arthritis (RA) is a debilitating chronic inflammatory disease in which symptoms exhibit a strong time-of-day rhythmicity. RA is commonly associated with metabolic disturbance and increased incidence of diabetes and cardiovascular disease, yet the mechanisms underlying this metabolic dysregulation remain unclear. Here, we demonstrate that rhythmic inflammation drives reorganization of metabolic programs in distal liver and muscle tissues. Chronic inflammation leads to mitochondrial dysfunction and dysregulation of fatty acid metabolism, including accumulation of inflammation-associated ceramide species in a time-of-day-dependent manner. These findings reveal multiple points for therapeutic intervention centered on the circadian clock, metabolic dysregulation, and inflammatory signaling

    Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism

    No full text
    Chronic inflammation underpins many human diseases. Morbidity and mortality associated with chronic inflammation are often mediated through metabolic dysfunction. Inflammatory and metabolic processes vary through circadian time, suggesting an important temporal crosstalk between these systems. Using an established mouse model of rheumatoid arthritis, we show that chronic inflammatory arthritis results in rhythmic joint inflammation and drives major changes in muscle and liver energy metabolism and rhythmic gene expression. Transcriptional and phosphoproteomic analyses revealed alterations in lipid metabolism and mitochondrial function associated with increased EGFR-JAK-STAT3 signaling. Metabolomic analyses confirmed rhythmic metabolic rewiring with impaired β-oxidation and lipid handling and revealed a pronounced shunt toward sphingolipid and ceramide accumulation. The arthritis-related production of ceramides was most pronounced during the day, which is the time of peak inflammation and increased reliance on fatty acid oxidation. Thus, our data demonstrate that localized joint inflammation drives a time-of-day–dependent build-up of bioactive lipid species driven by rhythmic inflammation and altered EGFR-STAT signaling

    Record warming at the South Pole during the past three decades

    No full text
    Over the last three decades, the South Pole has experienced a record-high statistically significant warming of 0.61 ± 0.34 °C per decade, more than three times the global average. Here, we use an ensemble of climate model experiments to show this recent warming lies within the upper bounds of the simulated range of natural variability. The warming resulted from a strong cyclonic anomaly in the Weddell Sea caused by increasing sea surface temperatures in the western tropical Pacific. This circulation, coupled with a positive polarity of the Southern Annular Mode, advected warm and moist air from the South Atlantic into the Antarctic interior. These results underscore the intimate linkage of interior Antarctic climate to tropical variability. Further, this study shows that atmospheric internal variability can induce extreme regional climate change over the Antarctic interior, which has masked any anthropogenic warming signal there during the twenty-first century
    corecore