26 research outputs found

    Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’

    Get PDF
    The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in ‘Granny Smith’ and ‘Ladina’ apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in ‘Granny Smith’. ‘Ladina’, more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in ‘Granny Smith’ apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder

    Pre- and Postharvest Factors Control the Disease Incidence of Superficial Scald in the New Fire Blight Tolerant Apple Variety “Ladina”

    No full text
    Superficial scald is a physiological disorder that develops during cold storage affecting apples and causes substantial market losses. Malus × domestica cv. Ladina, a new scab resistant and fire blight tolerant variety, commercialized in 2012, shows a physiological disorder similar to superficial scald after storage. Here, we used different pre- and postharvest approaches to characterize the occurrence of these superficial scald symptoms in Malus × domestica cv. Ladina. Over a period of seven years, fruits from multiple orchards were stored for five to seven months and the occurrence of superficial scald was assessed in fruits after cold storage and controlled atmosphere (CA) storage. Apples picked at different stages of ripeness within the same year differed in superficial scald development. Additionally, superficial scald differed significantly between years and locations, strongly suggesting that maturity at harvest, weather during the growing season, and orchard management play important roles in scald occurrence. Treatment with 1-methylcyclopropene (1-MCP) after harvest, and storage in a dynamically controlled atmosphere (DCA) significantly reduced the occurrence of superficial scald, whereas storage under ultralow oxygen concentrations (ULO) showed mild but not significant effects. Low calcium concentrations in the fruit flesh and peel were associated with stronger superficial scald occurrence

    Nutzung von Apfel-Genressourcen für den Bio-Anbau II

    No full text
    Inhalt: - Inventarisierung, Beschreibung & Nutzung von CH-Genressourcen - Nutzung von Apfel-Genressourcen für den Bio-Anbau (NAGBA) - Übersicht Projekt - Teilziel 1: Prüfung der „Top 30“ Sorten - Teilziel 1: Prüfung der Bio-Anbaueigenschaften im Freiland - Teilziel 1: Degustationen - Teilziel 1: Prüfung der Neofabraea-Anfälligkeit - Teilziel 2: Prüfung der Top 3 „alten Sorten“, der Top 3 Selektionen von Agroscope und der Top 3 Selektionen von Poma Culta (Top 3 × 3) - Teilziel 2: Prüfung der Bio-Anbaueigenschaften im Freiland - Teilziel 2: Analyse von Fruchtqualitätseigenschaften & Prüfung der Lagerfähigkeit von Früchten - Teilziel 3: Prüfung von Kreuzungsnachkommen bezüglich der Schorfanfälligkeit und der Feuerbrandanfälligkeit unter kontrollierten Bedingungen sowie der Bioanbaueigenschaften im Feld - Teilziel 3: Prüfung der Schorfanfälligkeit im Gewächshaus und der Bio-Anbaueigenschaften im Freiland - Teilziel 3: Feuerbrand Triebtestung im Gewächshaus - Teilziel 4: Abklärung des Marktpotentials aussichtsreicher Sorten und Kreuzungsnachkommen - Teilziel 4: sensorische Analyse durch Sensorikpanel Agroscope - Teilziel 4: Konsumententest am «Öpfeltag» 2022 - Schlussfolgerunge

    The genetic basis of apple shape and size unraveled by digital phenotyping

    No full text
    Great diversity of shape, size, and skin color is observed among the fruits of different apple genotypes. These traits are critical for consumers and therefore interesting targets for breeding new apple varieties. However, they are difficult to phenotype and their genetic basis, especially for fruit shape and ground color, is largely unknown. We used the fruit FruitPhenoBox to digitally phenotype 506 genotypes of the apple reference population (apple REFPOP) genotyped for 303,148 single nucleotide polymorphism (SNP) markers. From the apple images, 573 highly heritable features describing fruit shape and size as well as 17 highly heritable features for fruit skin color were extracted to explore genotype-phenotype relationships. Out of these features, nine and four principal components (PCs) as well as 16 and eight uncorrelated features were chosen to carry out genome-wide association studies for fruit shape, size, and fruit skin color, respectively. In total, 69 SNPs scattered over all 17 apple chromosomes were significantly associated with round, conical, cylindrical, or symmetric fruit shapes and fruit size. Novel associations with major effect on round or conical fruit shapes and fruit size were identified on chromosomes 1 and 2. Additionally, 16 SNPs associated with PCs and uncorrelated features related to red over color as well as green and yellow ground color were found on eight chromosomes. The identified associations can be used to advance marker-assisted selection in apple fruit breeding to systematically select for desired fruit appearance

    Table_1_Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’.xlsx

    No full text
    The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in ‘Granny Smith’ and ‘Ladina’ apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in ‘Granny Smith’. ‘Ladina’, more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in ‘Granny Smith’ apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.</p

    Table_5_Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’.xlsx

    No full text
    The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in ‘Granny Smith’ and ‘Ladina’ apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in ‘Granny Smith’. ‘Ladina’, more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in ‘Granny Smith’ apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.</p

    Table_8_Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’.xlsx

    No full text
    The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in ‘Granny Smith’ and ‘Ladina’ apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in ‘Granny Smith’. ‘Ladina’, more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in ‘Granny Smith’ apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.</p

    Presentation_3_Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’.pptx

    No full text
    The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in ‘Granny Smith’ and ‘Ladina’ apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in ‘Granny Smith’. ‘Ladina’, more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in ‘Granny Smith’ apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.</p

    Table_2_Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’.xlsx

    No full text
    The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in ‘Granny Smith’ and ‘Ladina’ apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in ‘Granny Smith’. ‘Ladina’, more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in ‘Granny Smith’ apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.</p

    Table_4_Comparative transcriptome and metabolite survey reveal key pathways involved in the control of the chilling injury disorder superficial scald in two apple cultivars, ‘Granny Smith’ and ‘Ladina’.xlsx

    No full text
    The low temperature normally applied to prevent fruit decay during the storage of apples, can also triggers the onset of a chilling injury disorder known as superficial scald. In this work, the etiology of this disorder and the mechanism of action of two preventing strategies, such as the application of 1-MCP (1-methylcyclopropene) and storage at low oxygen concentration in ‘Granny Smith’ and ‘Ladina’ apple cultivars were investigated. The metabolite assessment highlighted a reorganization of specific metabolites, in particular flavan-3-ols and unsaturated fatty acids, while the genome-wide transcriptomic analysis grouped the DEGs into four functional clusters. The KEGG pathway and GO enrichment analysis, together with the gene-metabolite interactome, showed that the treatment with 1-MCP prevented the development of superficial scald by actively promoting the production of unsaturated fatty acids, especially in ‘Granny Smith’. ‘Ladina’, more susceptible to superficial scald and less responsive to the preventing strategies, was instead characterized by a higher accumulation of very long chain fatty acids. Storage at low oxygen concentration stimulated a higher accumulation of ethanol and acetaldehyde together with the expression of genes involved in anaerobic respiration, such as malate, alcohol dehydrogenase and pyruvate decarboxylase in both cultivars. Low oxygen concentration, likewise 1-MCP, through a direct control on ethylene prevented the onset of superficial scald repressing the expression of PPO, a gene encoding for the polyphenol oxidase enzyme responsible of the oxidation of chlorogenic acid. Moreover, in ‘Granny Smith’ apple, the expression of three members of the VII subgroups of ERF genes, encoding for elements coordinating the acclimation process to hypoxia in plants was observed. The global RNA-Seq pattern also elucidated a specific transcriptomic signature between the two cultivars, disclosing the effect of the different genetic background in the control of this disorder.</p
    corecore