43 research outputs found

    Anisotropic velocity models for (3D) seismic imaging ofthe Lower Seve Nappe in Jämtland, Sweden

    Get PDF
    Strong anisotropy of seismic velocity in the Earth’scrust poses serious challenges for seismic imaging. Where in situ seismic properties are not available the anisotropy can be determined from velocity analysis of surface and borehole seismic profiles. This is well established for dense, long-offset reflection seismic data. However, it is unknown how applicable this approach is for sparse seismic reflection data with low fold and short offsets in anisotropic metamorphic rocks. Here we show that anisotropy parameters can be determined from a sparse 3D data set at the COSC-1 borehole site in the Swedish Caledonides and that the results agree well with the seismic anisotropy parameters determined from seismic laboratory measurements on core samples. Applying these anisotropy parameters during 3D seismic imaging improves the seismic image of the high amplitude reflections especially in the vicinity of the lower part of the borehole. Strong reflections in the resulting seismic data show good correlation with the borehole-derived lithology. Our results aid the interpretation and extrapolation of the seismic stratigraphy of the Lower Seve Nappe in Jämtland and other parts in the Caledonides

    Comparison between active stress field and tectonic structures in Northern Italy, Lombardy Region

    Get PDF
    The aim of this work is to understand the complex pattern of active stress field orientations revealed by borehole breakout analysis with respect to the tectonic structures in a wide region of Northern Italy. The area is located in the central-western part of the Po Plain between the south verging Southern Alps structures and the north verging buried folds and thrusts of the Monferrato and Emilia arcs. Little information concerning the active stress field is available because of the low seismicity level and the thick layer of sediments that covers the entire zone. A detailed borehole breakout analysis has been performed in 36 wells with depths ranging from 2.2 to 7.3 km, whose data have been supplied by Eni. Breakout analysis determined the minimum and maximum horizontal stress directions (Shmin and SHmax). The results show a very complex pattern, pointing out that the stress field is not uniform. In this area the regional stress field seems not «strong» enough, compared to the local one, so most of the wells detect only the local field. This work contributes to clarify the various Shmin orientations observed in this area, pointing out at wide scale, a general compression in NNE-SSW direction in this complex region

    Understanding volcanic facies in the subsurface : a combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawaii

    Get PDF
    Data availability. A digital archive of core photos and detailed core run depth log information is available at https://www.higp.hawaii.edu/hggrc/projects/humuula-groundwater-research-project/(HGGRS, 2019). The down-hole data are published with a digital object identifier via GFZ Data Services (Kück, 2019). Acknowledgements. This project was made possible by the collaborative outlook of the main partners (VBPR and DougalEARTH, GFZ, and the University of Hawai‘i) and the extensive background work undertaken by the researchers at the Hawai‘i Groundwater and Geothermal Resources Center (University of Hawai‘i) and from the HGRP project. Jehanne Paris is thanked for helping organize the logging operations and helping in the field. Martin Töpfer and Marco Groh (Operational Support Group, OSG, of ICDP, GFZ) are thanked for ensuring the smooth running of the logging operations. Dougal Jerram and Sverre Planke are also supported by the Research Council of Norway, through its Centres of Excellence funding scheme, project 223272 at CEED, University of Oslo. We would like to thank Breno Waichel and John Shervais for constructive reviews and the editorial team at Scientific Drilling for their prompt handling and meticulous guidance through the various stages from submission to publication.Peer reviewedPublisher PD

    Core-log-seismic integration in metamorphic rocks and its implication for the regional geology: A case study for the ICDP drilling project COSC-1, Sweden

    Get PDF
    Continental collision causes deformation in the crust along shear zones. However, the physical and chemical conditions at which these zones operate and the deformation processes that enable up to hundreds of km of tectonic transport are still unclear because of the depth at which they occur and the challenges in imaging them. Ancient exhumed collision zones allow us to investigate these processes much better, for example at the COSC‐1 borehole in the central Scandinavian Caledonides. This study combines data from the COSC‐1 borehole with different seismic measurements to provide constraints on the spatial lithological and textural configuration of the Seve Nappe Complex. This is one of the few studies that shows that core‐log‐seismic integration in metamorphic rocks allows to identify the spatial distribution of major lithological units. Especially gamma ray logs in combination with density data are powerful tools to distinguish between mafic and felsic lithologies in log‐core correlation. Our results indicate that reflections along the borehole are primarily caused by compositional rather than textural changes. Reflections in the Seve Nappe Complex are not as distinct as in greater depths but continuous and several of them can be linked to magmatic intrusions, which have been metamorphically overprinted. Their setting indicates that the Seve Nappe Complex consists of the remnants of a volcanic continental margin. Our results suggest that ductile‐deformed middle crustal reflectivity is primarily a function of pre‐orogenic lithological variations which has to be considered when deciphering mountain building processes

    Geophysical downhole logging analysis within the shallow depth ICDP STAR drilling project (Central Italy)

    Get PDF
    The ICDP STAR drilling project aims to study the seismic and aseismic fault slip behaviour of the active low-angle Alto Tiberina normal Fault (ATF) in the Northern Apennines, Central Italy, drilling and instrumenting six shallow boreholes with seismometers and strainmeters. During the STAR field work, a geophysical downhole logging campaign was carried on defining the optimal target depth for instrument deployment and formation rock characterization. In particular, the main objectives of this study were to define in situ physical properties of the rocks and the tectonic discontinuity geometry along the boreholes. The downhole logging data provide new findings and knowledge especially with regards to the physical properties such as resistivity, gamma ray and wave velocity. The collected parameters were compared to the results of literature data collected in similar lithologies, as well as with the results of logging performed in deeper wells drilled for commercial purposes. The physical properties of the Mesozoic-Early Tertiary calcareous formations show low Gamma Ray values and high compressional (Vp) and shear wave (Vs) velocities (up to 5.3 km/s and 2.9 km/s, respectively), whereas the overlying clay-rich Late Tertiary formations exhibit high Gamma Ray and low resistivity and relatively low Vp and Vs values (up to 3.5 km/s and 2.0 km/s, respectively). The results obtained from the analysis of the orientations of the tectonic structures, measured along the six boreholes, show a good agreement with the orientations of the present-day extensional stress field, NE-SW oriented. Our study allowed to bridge the gap between the physical properties obtained from literature data and those obtained from the deep wells measurements, representing a possible case history for future projects. These new data will contribute to the advancement of knowledge of the physical properties of the rocks at shallow depths, typically overlooked

    Pattern of seismicity in the Lucanian Apennines and foredeep (Southern Italy) from recording by SAPTEX temporary array

    Get PDF
    The deployment of a temporary seismic network in Southern Italy during 2001-2004 (the SAPTEX array, Southern APennine Tomography EXperiment) allowed us to relocate the hypocenters of Southern Apennines earthquakes with low uncertainty among the location parameters. The best array distribution of the SAPTEX network for the analysis of seismicity in the Lucanian Apennines and foredeep was reached in the first two years of recording. The SAPTEX data were merged with those of the Italian National Seismic Network (RSNC) operated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). For the hypocenters computation of events in the upper Agri Valley we also included P- and S- waves arrivals from the local Eni-Agip network. The seismicity for the Lucanian Apennines and foredeep in the analyzed period has magnitudes ranging from 2.0 to 4.1. A major finding is the identification of two different crustal domains: the westernmost characterizing the chain, mostly with shallow earthquakes (within about 20 km of depth), and the easternmost one belonging to the outer margin of the chain and to the foredeep, with deeper seismicity (mostly between 20-40 km of depth). Thirty fault-plane solutions were computed and used for stress inversion; most of them are related to earthquakes within the chain sector and indicate a generalized NE-SW extension. Moreover, the dense network allowed us to improve the location of events relative to two low magnitude sequences which occurred in the study period

    Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: a case study for the COSC-1 borehole, Sweden

    Get PDF
    Deeply rooted thrust zones are key features of tectonic processes and the evolution of mountain belts. Exhumed and deeply-eroded orogens like the Scandinavian Caledonides allow to study such systems from the surface. Previous seismic investigations of the Seve Nappe Complex have shown indications for a strong but discontinuous reflectivity of this thrust zone, which is only poorly understood. The correlation of seismic properties measured on borehole cores with surface seismic data constrains the origin of this reflectivity. In this study, we compare seismic velocities measured on cores to in situ velocities measured in the borehole. The core and downhole velocities deviate by up to 2 km/s. However, velocities of mafic rocks are generally in close agreement. Seismic anisotropy increases from about 5 to 26 % at depth, indicating a transition from gneissic to schistose foliation. We suggest that differences in the core and downhole velocities are most likely the result of microcracks mainly due to depressurization. Thus, seismic velocity can help to identify mafic rocks on different scales whereas the velocity signature of other lithologies is obscured in core-derived velocities. Metamorphic foliation on the other hand has a clear expression in seismic anisotropy. These results will aid in the evaluation of core-derived seismic properties of high-grade metamorphic rocks at the COSC-1 borehole and elsewhere. In particular, they show that core log seismic integration via synthetic seismograms requires wireline logging data in any but mafic lithologies
    corecore