32 research outputs found
Identification of two novel LDLR variants by Next Generation Sequencing
Introduction. Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). Targeted Next Generation Sequencing (NGS) is a new opportunity to expand the existing pathogenic variants (PVs) spectrum associated to FH. Our aim was to report a diagnostic NGS-based approach to detect variants associated to FH.Methods. We report two patients: a 48-year-old Asian woman, without known history of hypercholesterolemia and a 46-year-old Caucasian man, with childhood hypercholesterolemia.Results. An effective NGS-based pipeline, FH-Devyser kit/Amplicon Suite, beginning from sequencing to data analysis, did not identify known PVs in the LDLR, APOB, APOE, LDLRAP1, STAP1 and PCSK9 genes, but revealed two novel LDLR variants (c.1564A>T, p.Ile522Phe and c.1688C>T, p.Pro563Leu).Discussion and conclusions. This study showed that an effective NGS-based pipeline led to a definitive diagnosis in two FH families, allowing to plan their therapeutic treatment. Although the functional consequence of the two LDLR variants needs to be assessed in vitro, the in silico analysis and high preservation of the two amino acid positions observed in the LDLR protein, across different animal species, suggest that both variants are deleterious
Spotlight on ertugliflozin and its potential in the treatment of type 2 diabetes: Evidence to date
Sodium-glucose cotransporter 2 (SGLT2) inhibitors are the latest therapeutic strategy in the treatment of type 2 diabetes mellitus (T2DM). Using an insulin-independent mechanism (glycosuria), they reduce glucose toxicity and improve insulin sensitivity and \uce\ub2-cell function. The promising results obtained in clinical trials show that SGLT2 significantly improves glycemic control and provides greater cardiovascular protection, combined with a reduction in body weight and blood pressure (BP). This review focuses on ertugliflozin, a new, highly selective, and reversible SGLT2 inhibitor. Clinical trials published to date show that ertugliflozin, both as a monotherapy and as an add-on to oral antidiabetic agents, is safe and effective in reducing glycosylated hemoglobin (HbA1c), body weight, and BP in T2DM patients
Effects of PCSK9 inhibition on glucose metabolism and β-cell function in humans: a pilot study
BackgroundAnti-PCSK9 monoclonal antibodies are effective in reducing LDL-C and cardiovascular events by neutralizing circulating PCSK9. PCSK9, however, is also expressed in tissues, including the pancreas, and studies on PCSK9 KO mice have shown impaired insulin secretion. Statin treatment is already known to affect insulin secretion. Our aim was to conduct a pilot study to evaluate the effect of anti-PCSK9 mAb on glucose metabolism and β-cell function in humans.MethodsFifteen non-diabetic subjects, candidates for anti-PCSK9 mAb therapy, were enrolled. All underwent OGTT at baseline and after 6 months of therapy. During OGTT, insulin secretion parameters were derived from C-peptide by deconvolution (β cell glucose sensitivity). Surrogate insulin sensitivity indices were also obtained from OGTT (Matsuda).ResultsGlucose levels during OGTT were unchanged after 6 months of anti-PCSK9 mAb treatment, as well as insulin and C-peptide levels. The Matsuda index remained unchanged, while β-cell glucose sensitivity improved post-therapy (before: 85.3 ± 65.4; after: 118.6 ± 70.9 pmol min-1m-2mM-1; p<0.05). Using linear regression, we found a significant correlation between βCGS changes and BMI (p=0.004). Thus, we compared subjects with values above and below the median (27.6 kg/m2) and found that those with higher BMI had a greater increase in βCGS after therapy (before: 85.37 ± 24.73; after: 118.62 ± 26.83 pmol min-1m-2mM-1; p=0.007). There was also a significant correlation between βCGS change and Matsuda index through linear regression (p=0.04), so we analyzed subjects who had values above and below the median (3.8). This subgroup analysis showed a slight though not significant improvement in βCGS in more insulin resistant patients, (before: 131.4 ± 69.8; after: 170.8 ± 92.7 pmol min-1m-2mM-1; p=0.066).ConclusionsOur pilot study demonstrates that six-month treatment with anti-PCSK9 mAb improves β-cell function, and does not alter glucose tolerance. This improvement is more evident in patients with greater insulin-resistance (low Matsuda) and higher BMI
Effect of Vitamin D Supplementation on Obesity-Induced Insulin Resistance: A Double-Blind, Randomized, Placebo-Controlled Trial
Objective: The aim was to investigate whether vitamin D supplementation, combined with a hypocaloric
diet, could have an independent effect on insulin sensitivity in subjects with both overweight and
hypovitaminosis D. Changes from baseline in anthropometric parameters, body composition, glucose tolerance,
and insulin secretion were considered as secondary outcomes.
Methods: Eighteen volunteers who were nondiabetic and vitamin D deficient and had BMI>25 kg/m2
were randomized (1:1) in a double-blind manner to a hypocaloric diet1either oral cholecalciferol at
25,000 IU/wk or placebo for 3 months. Hyperinsulinemic-euglycemic clamp to measure insulin sensitivity
was performed at baseline and after intervention.
Results: Body weight in both groups decreased significantly (27.5% in the vitamin D group and 210% in the
placebo group; P<0.05 for both), with no between-group differences. Serum 25-hydroxyvitamin D levels in the
vitamin D group increased considerably (from 36.7613.2 nmol/L to 74.8618.7 nmol/L; P<0.001). Insulin sensitivity
in the vitamin D group improved (from 4.662.0 to 6.963.3mgkg21min21; P<0.001), whereas no
changes were observed in the placebo group (from 4.961.1 to 5.160.3mgkg21min21; P50.84).
Conclusions: Cholecalciferol supplementation, combined with a weight loss program, significantly
improves insulin sensitivity in healthy subjects with obesity and might represent a personalized approach
for insulin-resistant subjects with obesity
Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study
Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age.Methods: From the Italian LIPIGEN cohort, we selected 1188 (>= 18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation.Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives.Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age
Twelve Variants Polygenic Score for Low-Density Lipoprotein Cholesterol Distribution in a Large Cohort of Patients With Clinically Diagnosed Familial Hypercholesterolemia With or Without Causative Mutations
: Background A significant proportion of individuals clinically diagnosed with familial hypercholesterolemia (FH), but without any disease-causing mutation, are likely to have polygenic hypercholesterolemia. We evaluated the distribution of a polygenic risk score, consisting of 12 low-density lipoprotein cholesterol (LDL-C)-raising variants (polygenic LDL-C risk score), in subjects with a clinical diagnosis of FH. Methods and Results Within the Lipid Transport Disorders Italian Genetic Network (LIPIGEN) study, 875 patients who were FH-mutation positive (women, 54.75%; mean age, 42.47±15.00 years) and 644 patients who were FH-mutation negative (women, 54.21%; mean age, 49.73±13.54 years) were evaluated. Patients who were FH-mutation negative had lower mean levels of pretreatment LDL-C than patients who were FH-mutation positive (217.14±55.49 versus 270.52±68.59 mg/dL, P<0.0001). The mean value (±SD) of the polygenic LDL-C risk score was 1.00 (±0.18) in patients who were FH-mutation negative and 0.94 (±0.20) in patients who were FH-mutation positive (P<0.0001). In the receiver operating characteristic analysis, the area under the curve for recognizing subjects characterized by polygenic hypercholesterolemia was 0.59 (95% CI, 0.56-0.62), with sensitivity and specificity being 78% and 36%, respectively, at 0.905 as a cutoff value. Higher mean polygenic LDL-C risk score levels were observed among patients who were FH-mutation negative having pretreatment LDL-C levels in the range of 150 to 350 mg/dL (150-249 mg/dL: 1.01 versus 0.91, P<0.0001; 250-349 mg/dL: 1.02 versus 0.95, P=0.0001). A positive correlation between polygenic LDL-C risk score and pretreatment LDL-C levels was observed among patients with FH independently of the presence of causative mutations. Conclusions This analysis confirms the role of polymorphisms in modulating LDL-C levels, even in patients with genetically confirmed FH. More data are needed to support the use of the polygenic score in routine clinical practice
Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study
Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age. Methods: From the Italian LIPIGEN cohort, we selected 1188 (≥18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation. Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives. Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age
Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia
: Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score ≥1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups <0.0001); however, subjects with FH/M- and lp(a) score ≥1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level ≥190 mg/dL (or from 68% to 50%, considering a more conservative formula). Conclusions Our study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH
Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia
Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and ResultsAn lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score >= 1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups <0.0001); however, subjects with FH/M- and lp(a) score >= 1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level >= 190 mg/dL (or from 68% to 50%, considering a more conservative formula). ConclusionsOur study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH
Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study
Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life