24 research outputs found

    Existing fluid responsiveness studies using the mini-fluid challenge may be misleading:Methodological considerations and simulations

    Get PDF
    BACKGROUND: The mini-fluid challenge (MFC) is a clinical concept of predicting fluid responsiveness by rapidly infusing a small amount of intravenous fluids, typically 100 ml, and systematically assessing its haemodynamic effect. The MFC method is meant to predict if a patient will respond to a subsequent, larger fluid challenge, typically another 400 ml, with a significant increase in stroke volume. METHODS: We critically evaluated the general methodology of MFC studies, with statistical considerations, secondary analysis of an existing study, and simulations. RESULTS: Secondary analysis of an existing study showed that the MFC could predict the total fluid response (MFC + 400 ml) with an area under the receiver operator characteristics curve (AUROC) of 0.92, but that the prediction was worse than random for the response to the remaining 400 ml (AUROC = 0.33). In a null simulation with no response to both the MFC and the subsequent fluid challenge, the commonly used analysis could predict fluid responsiveness with an AUROC of 0.73. CONCLUSION: Many existing MFC studies are likely overestimating the classification accuracy of the MFC. This should be considered before adopting the MFC into clinical practice. A better study design includes a second, independent measurement of stroke volume after the MFC. This measurement serves as reference for the response to the subsequent fluid challenge

    Post-extrasystolic characteristics in the arterial blood pressure waveform are associated with right ventricular dysfunction in intensive care patients

    No full text
    Abstract Right ventricular dysfunction (RVD) is associated with end-organ dysfunction and mortality, but has been an overlooked condition in the ICU. We hypothesized that analysis of the arterial waveform in the presence of ventricular extrasystoles could differentiate patients with RVD from patients with a normally functioning right ventricle, because the 2nd and 3rd post-ectopic beat could reflect right ventricular state (pulmonary transit time) during the preceding ectopy. We retrospectively identified patients with echocardiographic evidence of moderate-to-severe RVD and patients with a normal functioning right ventricle (control) from the MIMIC database. We identified waveform records where ECG and arterial pressure were available in combination, simultaneously with echocardiographic evaluation. Ventricular extrasystoles were visually confirmed and the median systolic blood pressure (SBP) of the 2nd and 3rd post-ectopic beats compared with the median SBP of the ten sinus beats preceding the extrasystole. We identified 34 patients in the control group and 24 patients in the RVD group with ventricular extrasystoles. The mean SBP reduction at the 2nd and 3rd beat was lower in the RVD group compared with the control group [− 1.7 (SD: 1.9) % vs. − 3.6 (SD: 1.9) %, p < 0.001], and this characteristic differentiated RVD subjects from control subjects with an AUC of 0.76 (CI [0.64; 0.89]), with a specificity of 91% and sensitivity of 50%. In this proof-of-concept study, we found that post-extrasystolic ABP characteristics were associated with RVD

    Prevalence and Temporal Distribution of Extrasystoles in Septic ICU Patients: The Feasibility of Predicting Fluid Responsiveness Using Extrasystoles

    No full text
    Background. Extrasystoles may be useful for predicting the response to fluid therapy in hemodynamically unstable patients but their prevalence is unknown. The aim of this study was to estimate the availability of extrasystoles in intensive care unit patients diagnosed with sepsis. The study aim was not to validate the fluid responsiveness prediction ability of extrasystoles. Methods. Twenty-four-hour ECG recordings from a convenience sample of 50 patients diagnosed with sepsis were extracted from the MIMIC-II waveform database, and ECGs were visually examined for correct QRS complex detection. Custom-made algorithms identified potential extrasystoles based on RR intervals. Two raters visually confirmed or rejected the potential extrasystoles and then classified them as ventricular, supraventricular, or unknown origin. Extrasystole availability was calculated as extrasystolic coverage for each 24 h ECG recording, that is, the percentage of the 24 h recording where an extrasystole had occurred in the preceding 30 minutes. Results. Mean extrasystolic coverage was 53.3% (confidence interval: [42.8; 63.6]%) and ventricular extrasystolic coverage was 21.4 [13.5; 29.8]%. Interrater reliability was strong for confirming/rejecting extrasystoles. Conclusions. Extrasystoles are available for fluid responsiveness prediction in septic patients in about half of the time. With this extrasystolic availability, we believe the method to be considered for clinical use, provided that future studies validate the method’s fluid responsiveness prediction ability

    The response of a standardized fluid challenge during cardiac surgery on cerebral oxygen saturation measured with near-infrared spectroscopy

    Get PDF
    Near infrared spectroscopy (NIRS) has been used to evaluate regional cerebral tissue oxygen saturation (ScO2) during the last decades. Perioperative management algorithms advocate to maintain ScO2, by maintaining or increasing cardiac output (CO), e.g. with fluid infusion. We hypothesized that ScO2 would increase in responders to a standardized fluid challenge (FC) and that the relative changes in CO and ScO2 would correlate. This study is a retrospective substudy of the FLuid Responsiveness Prediction Using Extra Systoles (FLEX) trial. In the FLEX trial, patients were administered two standardized FCs (5 mL/kg ideal body weight each) during cardiac surgery. NIRS monitoring was used during the intraoperative period and CO was monitored continuously. Patients were considered responders if stroke volume increased more than 10% following FC. Datasets from 29 non-responders and 27 responders to FC were available for analysis. Relative changes of ScO2 did not change significantly in non-responders (mean difference − 0.3% ± 2.3%, p = 0.534) or in fluid responders (mean difference 1.6% ± 4.6%, p = 0.088). Relative changes in CO and ScO2 correlated significantly, p = 0.027. Increasing CO by fluid did not change cerebral oxygenation. Despite this, relative changes in CO correlated to relative changes in ScO2. However, the clinical impact of the present observations is unclear, and the results must be interpreted with caution. Trial registration:http://ClinicalTrial.gov identifier for main study (FLuid Responsiveness Prediction Using Extra Systoles—FLEX): NCT03002129
    corecore