1,587 research outputs found

    Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    Get PDF
    Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attributed to three separate groups: wild, Eastern cultivated and Western cultivated. Twenty-seven markers showing signatures for selection were identified. They showed a directional shift in frequency from the wild to the cultivated, likely reflecting diversifying selection imposed in the course of domestication. A genetic linkage map constructed using 188 F2 plants comprised 431 markers with an average distance of 1.1 cM, divided into nine linkage groups. Using previously anchored single nucleotide polymorphisms, the linkage groups were physically attributed to the nine carrot chromosomes. A cluster of markers mapping to chromosome 8 showed significant segregation distortion. Two of the 27 DArT markers with signatures for selection were segregating in the mapping population and were localized on chromosomes 2 and 6. Chromosome 2 was previously shown to carry the Vrn1 gene governing the biennial growth habit essential for cultivated carrot. The results reported here provide background for further research on the history of carrot domestication and identify genomic regions potentially important for modern carrot breeding

    An Automated Image Analysis Pipeline Enables Genetic Studies of Shoot and Root Morphology in Carrot (Daucus carota L.)

    Get PDF
    Carrot is a globally important crop, yet efficient and accurate methods for quantifying its most important agronomic traits are lacking. To address this problem, we developed an automated image analysis platform that extracts components of size and shape for carrot shoots and roots, which are necessary to advance carrot breeding and genetics. This method reliably measured variation in shoot size and shape, petiole number, petiole length, and petiole width as evidenced by high correlations with hundreds of manual measurements. Similarly, root length and biomass were accurately measured from the images. This platform also quantified shoot and root shapes in terms of principal components, which do not have traditional, manually measurable equivalents. We applied the pipeline in a study of a six-parent diallel population and an F2 mapping population consisting of 316 individuals. We found high levels of repeatability within a growing environment, with low to moderate repeatability across environments. We also observed co-localization of quantitative trait loci for shoot and root characteristics on chromosomes 1, 2, and 7, suggesting these traits are controlled by genetic linkage and/or pleiotropy. By increasing the number of individuals and phenotypes that can be reliably quantified, the development of a rapid, automated image analysis pipeline to measure carrot shoot and root morphology will expand the scope and scale of breeding and genetic studies

    Measuring multipartite entanglement via dynamic susceptibilities

    Get PDF
    Entanglement plays a central role in our understanding of quantum many body physics, and is fundamental in characterising quantum phases and quantum phase transitions. Developing protocols to detect and quantify entanglement of many-particle quantum states is thus a key challenge for present experiments. Here, we show that the quantum Fisher information, representing a witness for genuinely multipartite entanglement, becomes measurable for thermal ensembles via the dynamic susceptibility, i.e., with resources readily available in present cold atomic gas and condensed-matter experiments. This moreover establishes a fundamental connection between multipartite entanglement and many-body correlations contained in response functions, with profound implications close to quantum phase transitions. There, the quantum Fisher information becomes universal, allowing us to identify strongly entangled phase transitions with a divergent multipartiteness of entanglement. We illustrate our framework using paradigmatic quantum Ising models, and point out potential signatures in optical-lattice experiments.Comment: 5+5 pages, 3+2 figure

    Structural and doping effects in the half-metallic double perovskite A2A_2CrWO6_6

    Full text link
    he structural, transport, magnetic and optical properties of the double perovskite A2A_2CrWO6_6 with A=Sr, Ba, CaA=\text{Sr, Ba, Ca} have been studied. By varying the alkaline earth ion on the AA site, the influence of steric effects on the Curie temperature TCT_C and the saturation magnetization has been determined. A maximum TC=458T_C=458 K was found for Sr2_2CrWO6_6 having an almost undistorted perovskite structure with a tolerance factor f≃1f\simeq 1. For Ca2_2CrWO6_6 and Ba2_2CrWO6_6 structural changes result in a strong reduction of TCT_C. Our study strongly suggests that for the double perovskites in general an optimum TCT_C is achieved only for f≃1f \simeq 1, that is, for an undistorted perovskite structure. Electron doping in Sr2_2CrWO6_6 by a partial substitution of Sr2+^{2+} by La3+^{3+} was found to reduce both TCT_C and the saturation magnetization MsM_s. The reduction of MsM_s could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2_2CrWO6_6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2A_2CrWO6_6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.Comment: 14 pages, 10 figure

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~g cm−3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass M⋆M_\star=0.99±0.050.99\pm0.05~M⊙\mathrm{M_{\odot}}, radius R⋆R_\star=1.01±0.041.01\pm0.04~R⊙\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.30681−0.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.5715−0.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.55−0.21+0.241.55^{+0.24}_{-0.21} R⊕R_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods Pâ‰Č2P\lesssim 2 days, planets with a radius Rp≳2 R⊕R_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2 R⊕\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2 R⊕\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 R⊕R_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    The origin of the [C II] emission in the S140 PDRs - new insights from HIFI

    Get PDF
    Using Herschel's HIFI instrument we have observed [C II] along a cut through S140 and high-J transitions of CO and HCO+ at two positions on the cut, corresponding to the externally irradiated ionization front and the embedded massive star forming core IRS1. The HIFI data were combined with available ground-based observations and modeled using the KOSMA-tau model for photon dominated regions. Here we derive the physical conditions in S140 and in particular the origin of [C II] emission around IRS1. We identify three distinct regions of [C II] emission from the cut, one close to the embedded source IRS1, one associated with the ionization front and one further into the cloud. The line emission can be understood in terms of a clumpy model of photon-dominated regions. At the position of IRS1, we identify at least two distinct components contributing to the [C II] emission, one of them a small, hot component, which can possibly be identified with the irradiated outflow walls. This is consistent with the fact that the [C II] peak at IRS1 coincides with shocked H2 emission at the edges of the outflow cavity. We note that previously available observations of IRS1 can be well reproduced by a single-component KOSMA-tau model. Thus it is HIFI's unprecedented spatial and spectral resolution, as well as its sensitivity which has allowed us to uncover an additional hot gas component in the S140 region.Comment: accepted for publication in Astronomy and Astrophysics (HIFI special issue
    • 

    corecore